Displaying all 19 publications

Abstract:
Sort:
  1. Salman S, Bendel D, Lee TC, Templeton D, Davis TM
    Antimicrob Agents Chemother, 2015;59(6):3197-207.
    PMID: 25801553 DOI: 10.1128/AAC.05013-14
    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in two open-label studies. In study 1, 16 healthy males were randomized to each of four single-dose treatments administered in random order: (i) 15.0 mg of sublingual artemether (5 × 3.0 actuations), (ii) 30.0 mg of sublingual artemether (10 × 3.0 mg), (iii) 30.0 mg of sublingual artemether (5 × 6.0 mg), and (iv) 30.0 mg of artemether in tablet form. In study 2, 16 healthy males were randomized to eight 30.0-mg doses of sublingual artemether given over 5 days as either 10 3.0-mg or 5 6.0-mg actuations. Frequent blood samples were drawn postdose. Plasma artemether and dihydroartemisinin levels were measured using liquid chromatography-mass spectrometry. Population compartmental pharmacokinetic models were developed. In study 1, sublingual artemether absorption was biphasic, with both rate constants being greater than that of the artemether tablets (1.46 and 1.66 versus 0.43/h, respectively). Relative to the tablets, sublingual artemether had greater bioavailability (≥1.24), with the greatest relative bioavailability occurring in the 30.0-mg dose groups (≥1.58). In study 2, there was evidence that the first absorption phase accounted for between 32% and 69% of the total dose and avoided first-pass (FP) metabolism, with an increase in FP metabolism occurring in later versus earlier doses but with no difference in bioavailability between the dose actuations. Sublingual artemether is more rapidly and completely absorbed than are equivalent doses of artemether tablets in healthy adults. Its disposition appears to be complex, with two absorption phases, the first representing pregastrointestinal absorption, as well as dose-dependent bioavailability and autoinduction of metabolism with multiple dosing.
    Matched MeSH terms: Artemisinins/administration & dosage*
  2. Naing C, Whittaker MA, Mak JW, Aung K
    Malar J, 2015;14:392.
    PMID: 26445424 DOI: 10.1186/s12936-015-0919-5
    This study aimed to synthesize the existing evidence on the efficacy and safety of a single dose artemisinin-naphthoquine (ASNQ) for treatment of uncomplicated malaria in endemic countries.
    Matched MeSH terms: Artemisinins/administration & dosage*
  3. Salman S, Bendel D, Lee TC, Templeton D, Davis TM
    Antimicrob Agents Chemother, 2015;59(6):3208-15.
    PMID: 25801552 DOI: 10.1128/AAC.05014-14
    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using established population compartmental pharmacokinetic models. Parasite clearance was prompt (median parasite clearance time, 24 h), and there were no serious adverse events. Consistent with studies in healthy adults (S. Salman, D. Bendel, T. C. Lee, D. Templeton, and T. M. E. Davis, Antimicrob Agents Chemother 59:3197-3207, 2015, http://dx.doi.org/10.1128/AAC.05013-14), the absorption of sublingual artemether was biphasic, and multiple dosing was associated with the autoinduction of the metabolism of artemether to DHA (which itself has potent antimalarial activity). In contrast to studies using healthy volunteers, pharmacokinetic modeling indicated that the first absorption phase did not avoid first-pass metabolism, suggesting that the drug is transferred to the upper intestine through postdose fluid/food intake. Simulations using the present data and those from an earlier study in older Melanesian children with uncomplicated malaria treated with artemether-lumefantrine tablets suggested that the bioavailability of sublingual artemether was at least equivalent to that after conventional oral artemether-lumefantrine (median [interquartile range] areas under the concentration-time curve for artemether, 3,403 [2,471 to 4,771] versus 3,063 [2,358 to 4,514] μg · h/liter, respectively; and for DHA, 2,958 [2,146 to 4,278] versus 2,839 [1,812 to 3,488] μg · h/liter, respectively; P ≥ 0.42). These findings suggest that sublingual artemether could be used as prereferral treatment for sick children before transfer for definitive management of severe or moderately severe malaria.
    Matched MeSH terms: Artemisinins/administration & dosage*
  4. Commons RJ, Simpson JA, Thriemer K, Abreha T, Adam I, Anstey NM, et al.
    PLoS Med, 2019 Oct;16(10):e1002928.
    PMID: 31584960 DOI: 10.1371/journal.pmed.1002928
    BACKGROUND: Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax.

    METHODS AND FINDINGS: Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7-49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1-12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40-24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48-0.84), p = 0.0013 and 0.83 (0.73-0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99-1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01-0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10-0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01-0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups.

    CONCLUSIONS: In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.

    Matched MeSH terms: Artemisinins/administration & dosage*
  5. Reuter SE, Upton RN, Evans AM, Navaratnam V, Olliaro PL
    J Antimicrob Chemother, 2015 Mar;70(3):868-76.
    PMID: 25377567 DOI: 10.1093/jac/dku430
    BACKGROUND: The determination of dosing regimens for the treatment of malaria is largely empirical and thus a better understanding of the pharmacokinetic/pharmacodynamic properties of antimalarial agents is required to assess the adequacy of current treatment regimens and identify sources of suboptimal dosing that could select for drug-resistant parasites. Mefloquine is a widely used antimalarial, commonly given in combination with artesunate.

    PATIENTS AND METHODS: Mefloquine pharmacokinetics was assessed in 24 healthy adults and 43 patients with Plasmodium falciparum malaria administered mefloquine in combination with artesunate. Population pharmacokinetic modelling was conducted using NONMEM.

    RESULTS: A two-compartment model with a single transit compartment and first-order elimination from the central compartment most adequately described mefloquine concentration-time data. The model incorporated population parameter variability for clearance (CL/F), central volume of distribution (VC/F) and absorption rate constant (KA) and identified, in addition to body weight, malaria infection as a covariate for VC/F (but not CL/F). Monte Carlo simulations predict that falciparum malaria infection is associated with a shorter elimination half-life (407 versus 566 h) and T>MIC (766 versus 893 h).

    CONCLUSIONS: This is the first known population pharmacokinetic study to show falciparum malaria to influence mefloquine disposition. Protein binding, anaemia and other factors may contribute to differences between healthy individuals and patients. As VC/F is related to the earlier portion of the concentration-time profiles, which occurs during acute malaria, and CL/F is more related to the terminal phase during convalescence after treatment, this may explain why malaria was found to be a covariate for VC/F but not CL/F.

    Matched MeSH terms: Artemisinins/administration & dosage
  6. Bird EM, Parameswaran U, William T, Khoo TM, Grigg MJ, Aziz A, et al.
    Malar J, 2016 Jul 12;15(1):357.
    PMID: 27405869 DOI: 10.1186/s12936-016-1398-z
    BACKGROUND: Transfusion-transmitted malaria (TTM) is a well-recognized risk of receiving blood transfusions, and has occurred with Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. The simian parasite Plasmodium knowlesi is also known to be transmissible through inoculation of infected blood, and this species is now the most common cause of malaria in Malaysia with a high rate of severity and fatal cases reported. No confirmed case of accidental transfusion-transmitted P. knowlesi has yet been reported.

    CASE PRESENTATION: A 23-year old splenectomized patient with beta thalassaemia major presented with fever 11 days after receiving a blood transfusion from a pre-symptomatic donor who presented with knowlesi malaria 12 days following blood donation. The infection resulted in severe disease in the recipient, with a parasite count of 84,000/µL and associated metabolic acidosis and multi-organ failure. She was treated with intravenous artesunate and made a good recovery. Sequencing of a highly diverse 649-base pair fragment of the P. knowlesi bifunctional dihydrofolate reductase-thymidylate synthase gene (pkdhfr) revealed that the recipient and donor shared the same haplotype.

    CONCLUSIONS: This case demonstrates that acquisition of P. knowlesi from blood transfusion can occur, and that clinical consequences can be severe. Furthermore, this case raises the possibility that thalassaemic patients, particularly those who are splenectomized, may represent a high-risk group for TTM and severe malaria. With rising P. knowlesi incidence, further studies in Sabah are required to determine the risk of TTM in order to guide screening strategies for blood transfusion services.

    Matched MeSH terms: Artemisinins/administration & dosage
  7. Mohd Ridzuan MA, Sow A, Noor Rain A, Mohd Ilham A, Zakiah I
    Trop Biomed, 2007 Jun;24(1):111-8.
    PMID: 17568384 MyJurnal
    Eurycoma longifolia, locally known as 'Tongkat Ali' is a popular local medicinal plant that possess a lot of medicinal properties as claimed traditionally, especially in the treatment of malaria. The claims have been proven scientifically on isolated compounds from the plant. The present study is to investigate the anti malaria properties of Eurycoma longifolia standardized extract (root) (TA164) alone and in combination with artemisinin in vivo. Combination treatment of the standardized extract (TA164) with artemisinin suppressed P. yoelii infection in the experimental mice. The 4 day suppressive test showed that TA164 suppressed the parasitemia of P. yoelii-infected mice as dose dependent manner (10, 30 and 60 mg/kg BW) by oral and subcutaneous treatment. By oral administration, combination of TA164 at 10, 30 and 60 mg/kg BW each with artemisinin respectively showed a significant increase in the parasitemia suppression to 63, 67 and 80 percent as compared to artemisinin single treatment (31%). Using subcutaneous administration, at 10 mg/kg BW of TA164 in combination with 1.7 mg/kg BW of artemisinin gave a suppression of 80% of infection. This study showed that combination treatment of TA164 with artemisinin gives a promising potential anti malaria candidate using both oral and subcutaneous route, the later being the most potent.
    Matched MeSH terms: Artemisinins/administration & dosage*
  8. Chong SE, Mohamad Zaini RH, Suraiya S, Lee KT, Lim JA
    Malar J, 2017 01 03;16(1):2.
    PMID: 28049485 DOI: 10.1186/s12936-016-1666-y
    BACKGROUND: Dengue and malaria are two common, mosquito-borne infections, which may lead to mortality if not managed properly. Concurrent infections of dengue and malaria are rare due to the different habitats of its vectors and activities of different carrier mosquitoes. The first case reported was in 2005. Since then, several concurrent infections have been reported between the dengue virus (DENV) and the malaria protozoans, Plasmodium falciparum and Plasmodium vivax. Symptoms of each infection may be masked by a simultaneous second infection, resulting in late treatment and severe complications. Plasmodium knowlesi is also a common cause of malaria in Malaysia with one of the highest rates of mortality. This report is one of the earliest in literature of concomitant infection between DENV and P. knowlesi in which a delay in diagnosis had placed a patient in a life-threatening situation.

    CASE PRESENTATION: A 59-year old man staying near the Belum-Temengor rainforest at the Malaysia-Thailand border was admitted with fever for 6 days, with respiratory distress. His non-structural protein 1 antigen and Anti-DENV Immunoglobulin M tests were positive. He was treated for severe dengue with compensated shock. Treating the dengue had so distracted the clinicians that a blood film for the malaria parasite was not done. Despite aggressive supportive treatment in the intensive care unit (ICU), the patient had unresolved acidosis as well as multi-organ failure involving respiratory, renal, liver, and haematological systems. It was due to the presentation of shivering in the ICU, that a blood film was done on the second day that revealed the presence of P. knowlesi with a parasite count of 520,000/μL. The patient was subsequently treated with artesunate-doxycycline and made a good recovery after nine days in ICU.

    CONCLUSIONS: This case contributes to the body of literature on co-infection between DENV and P. knowlesi and highlights the clinical consequences, which can be severe. Awareness should be raised among health-care workers on the possibility of dengue-malaria co-infection in this region. Further research is required to determine the real incidence and risk of co-infection in order to improve the management of acute febrile illness.

    Matched MeSH terms: Artemisinins/administration & dosage
  9. Barber BE, Grigg MJ, William T, Yeo TW, Anstey NM
    Malar J, 2016 Sep 09;15:462.
    PMID: 27613607 DOI: 10.1186/s12936-016-1514-0
    BACKGROUND: Haemoglobinuria is an uncommon complication of severe malaria, reflecting acute intravascular haemolysis and potentially leading to acute kidney injury. It can occur early in the course of infection as a consequence of a high parasite burden, or may occur following commencement of anti-malarial treatment. Treatment with quinine has been described as a risk factor; however the syndrome may also occur following treatment with intravenous artesunate. In Malaysia, Plasmodium knowlesi is the most common cause of severe malaria, often associated with high parasitaemia. Asplenic patients may be at additional increased risk of intravascular haemolysis.

    CASE PRESENTATION: A 61 years old asplenic man was admitted to a tertiary referral hospital in Sabah, Malaysia, with severe knowlesi malaria characterized by hyperparasitaemia (7.9 %), jaundice, respiratory distress, metabolic acidosis, and acute kidney injury. He was commenced on intravenous artesunate, but1 day later developed haemoglobinuria, associated with a 22 % reduction in admission haemoglobin. Additional investigations, including a cell-free haemoglobin of 10.2 × 10(5) ng/mL and an undetectable haptoglobin, confirmed intravascular haemolysis. The patient continued on intravenous artesunate for a total of 48 h prior to substitution with artemether-lumefantrine, and made a good recovery with resolution of his haemoglobinuria and improvement of his kidney function by day 3.

    CONCLUSIONS: An asplenic patient with hyperparasitaemic severe knowlesi malaria developed haemoglobinuria after treatment with intravenous artesunate. There are plausible mechanisms for increased haemolysis with hyperparasitaemia, and following both splenectomy and artesunate. Although in this case the patient made a rapid recovery, knowlesi malaria patients with this unusual complication should be closely monitored for potential deterioration.

    Matched MeSH terms: Artemisinins/administration & dosage
  10. Lai CS, Nair NK, Muniandy A, Mansor SM, Olliaro PL, Navaratnam V
    J Chromatogr B Analyt Technol Biomed Life Sci, 2009 Feb 15;877(5-6):558-62.
    PMID: 19147417 DOI: 10.1016/j.jchromb.2008.12.037
    With the expanded use of the combination of artesunate (AS) and amodiaquine (AQ) for the treatment of falciparum malaria and the abundance of products on the market, comes the need for rapid and reliable bioanalytical methods for the determination of the parent compounds and their metabolites. While the existing methods were developed for the determination of either AS or AQ in biological fluids, the current validated method allows simultaneous extraction and determination of AS and AQ in human plasma. Extraction is carried out on Supelclean LC-18 extraction cartridges where AS, its metabolite dihydroartemisinin (DHA) and the internal standard artemisinin (QHS) are separated from AQ, its metabolite desethylamodiaquine (DeAQ) and the internal standard, an isobutyl analogue of desethylamodiaquine (IB-DeAQ). AS, DHA and QHS are then analysed using Hypersil C4 column with acetonitrile-acetic acid (0.05M adjusted to pH 5.2 with 1.00M NaOH) (42:58, v/v) as mobile phase at flow rate 1.50ml/min. The analytes are detected with an electrochemical detector operating in the reductive mode. Chromatography of AQ, DeAQ and IB-DeAQ is carried out on an Inertsil C4 column with acetonitrile-KH(2)PO(4) (pH 4.0, 0.05M) (11:89, v/v) as mobile phase at flow rate 1.00ml/min. The analytes are detected by an electrochemical detector operating in the oxidative mode. The recoveries of AS, DHA, AQ and DeAQ vary between 79.1% and 104.0% over the concentration range of 50-1400ng/ml plasma. The accuracies of the determination of all the analytes are 96.8-103.9%, while the variation for within-day and day-to-day analysis are <15%. The lower limit of quantification for all the analytes is 20ng/ml and limit of detection is 8ng/ml. The method is sensitive, selective, accurate, reproducible and suited particularly for pharmacokinetic study of AS-AQ drug combination and can also be used to compare the bioavailability of different formulations, including a fixed-dose AS-AQ co-formulation.
    Matched MeSH terms: Artemisinins/administration & dosage
  11. Permala J, Tarning J, Nosten F, White NJ, Karlsson MO, Bergstrand M
    PMID: 28242661 DOI: 10.1128/AAC.02491-16
    Intermittent preventive treatment (IPT) is used to reduce malaria morbidity and mortality, especially in vulnerable groups such as children and pregnant women. IPT with the fixed dose combination of piperaquine (PQ) and dihydroartemisinin (DHA) is being evaluated as a potential mass treatment to control and eliminate artemisinin-resistant falciparum malaria. This study explored alternative DHA-PQ adult dosing regimens compared to the monthly adult dosing regimen currently being studied in clinical trials. A time-to-event model describing the concentration-effect relationship of preventive DHA-PQ administration was used to explore the potential clinical efficacy of once-weekly adult dosing regimens. Loading dose strategies were evaluated and the advantage of weekly dosing regimen was tested against different degrees of adherence. Assuming perfect adherence, three tablets weekly dosing regimen scenarios maintained malaria incidence of 0.2 to 0.3% per year compared to 2.1 to 2.6% for all monthly dosing regimen scenarios and 52% for the placebo. The three tablets weekly dosing regimen was also more forgiving (i.e., less sensitive to poor adherence), resulting in a predicted ∼4% malaria incidence per year compared to ∼8% for dosing regimen of two tablets weekly and ∼10% for monthly regimens (assuming 60% adherence and 35% interindividual variability). These results suggest that weekly dosing of DHA-PQ for malaria chemoprevention would improve treatment outcomes compared to monthly administration by lowering the incidence of malaria infections, reducing safety concerns about high PQ peak plasma concentrations and being more forgiving. In addition, weekly dosing is expected to reduce the selection pressure for PQ resistance.
    Matched MeSH terms: Artemisinins/administration & dosage
  12. Rajahram GS, Barber BE, William T, Menon J, Anstey NM, Yeo TW
    Malar J, 2012;11:284.
    PMID: 22905799 DOI: 10.1186/1475-2875-11-284
    The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory.
    Matched MeSH terms: Artemisinins/administration & dosage*
  13. Rajahram GS, Cooper DJ, William T, Grigg MJ, Anstey NM, Barber BE
    Clin Infect Dis, 2019 10 30;69(10):1703-1711.
    PMID: 30624597 DOI: 10.1093/cid/ciz011
    BACKGROUND: Plasmodium knowlesi causes severe and fatal malaria, and incidence in Southeast Asia is increasing. Factors associated with death are not clearly defined.

    METHODS: All malaria deaths in Sabah, Malaysia, from 2015 to 2017 were identified from mandatory reporting to the Sabah Department of Health. Case notes were reviewed, and a systematic review of these and all previously reported fatal P. knowlesi cases was conducted. Case fatality rates (CFRs) during 2010-2017 were calculated using incidence data from the Sabah Department of Health.

    RESULTS: Six malaria deaths occurred in Sabah during 2015-2017, all from P. knowlesi. Median age was 40 (range, 23-58) years; 4 cases (67%) were male. Three (50%) had significant cardiovascular comorbidities and 1 was pregnant. Delays in administering appropriate therapy contributed to 3 (50%) deaths. An additional 26 fatal cases were included in the systematic review. Among all 32 cases, 18 (56%) were male; median age was 56 (range, 23-84) years. Cardiovascular-metabolic disease, microscopic misdiagnosis, and delay in commencing intravenous treatment were identified in 11 of 32 (34%), 26 of 29 (90%), and 11 of 31 (36%) cases, respectively. The overall CFR during 2010-2017 was 2.5/1000: 6.0/1000 for women and 1.7/1000 for men (P = .01). Independent risk factors for death included female sex (odds ratio, 2.6; P = .04), and age ≥45 years (odds ratio, 4.7; P < .01).

    CONCLUSIONS: Earlier presentation, more rapid diagnosis, and administration of intravenous artesunate may avoid fatal outcomes, particularly in females, older adults, and patients with cardiovascular comorbidities.

    Matched MeSH terms: Artemisinins/administration & dosage
  14. Navaratnam V, Ramanathan S, Wahab MS, Siew Hua G, Mansor SM, Kiechel JR, et al.
    Eur J Clin Pharmacol, 2009 Aug;65(8):809-21.
    PMID: 19404632 DOI: 10.1007/s00228-009-0656-1
    There is limited pharmacokinetic data available for the combination artesunate + amodiaquine, which is used widely to treat uncomplicated malaria. This study examines the bioavailability and tolerability of a fixed (200 mg artesunate + 540 mg amodiaquine) and loose (200 mg + 612 mg) combination with a 2x2 cross-over design in 24 healthy volunteers.
    Matched MeSH terms: Artemisinins/administration & dosage*
  15. Yusof W, Gan SH
    Clin Chim Acta, 2009 May;403(1-2):105-9.
    PMID: 19361454 DOI: 10.1016/j.cca.2009.01.032
    CYP2A6 gene encodes the principal enzyme involved in the metabolism of many drugs including artesunate. We developed a simplified duplex nested PCR method for the detection of the CYP2A61B, CYP2A62, CYP2A64, CYP2A67, CYP2A68 and CYP2A69 variant alleles highly prevalent among Malaysian population.
    Matched MeSH terms: Artemisinins/administration & dosage
  16. Lai CS, Nair NK, Mansor SM, Olliaro PL, Navaratnam V
    PMID: 17719858
    The combination of two sensitive, selective and reproducible reversed phase liquid chromatographic (RP-HPLC) methods was developed for the determination of artesunate (AS), its active metabolite dihydroartemisinin (DHA) and mefloquine (MQ) in human plasma. Solid phase extraction (SPE) of the plasma samples was carried out on Supelclean LC-18 extraction cartridges. Chromatographic separation of AS, DHA and the internal standard, artemisinin (QHS) was obtained on a Hypersil C4 column with mobile phase consisting of acetonitrile-0.05 M acetic acid adjusted to pH 5.2 with 1.0M NaOH (42:58, v/v) at the flow rate of 1.50 ml/min. The analytes were detected using an electrochemical detector operating in the reductive mode. Chromatography of MQ and the internal standard, chlorpromazine hydrochloride (CPM) was carried out on an Inertsil C8-3 column using methanol-acetonitrile-0.05 M potassium dihydrogen phosphate adjusted to pH 3.9 with 0.5% orthophosphoric acid (50:8:42, v/v/v) at a flow rate of 1.00 ml/min with ultraviolet detection at 284 nm. The mean recoveries of AS and DHA over a concentration range of 30-750 ng/0.5 ml plasma and MQ over a concentration of 75-1500 ng/0.5 ml plasma were above 80% and the accuracy ranged from 91.1 to 103.5%. The within-day coefficients of variation were 1.0-1.4% for AS, 0.4-3.4% for DHA and 0.7-1.5% for MQ. The day-to-day coefficients of variation were 1.3-7.6%, 1.8-7.8% and 2.0-3.4%, respectively. Both the lower limit of quantifications for AS and DHA were at 10 ng/0.5 ml and the lower limit of quantification for MQ was at 25 ng/0.5 ml. The limit of detections were 4 ng/0.5 ml for AS and DHA and 15 ng/0.5 ml for MQ. The method was found to be suitable for use in clinical pharmacological studies.
    Matched MeSH terms: Artemisinins/administration & dosage
  17. Khammanee T, Sawangjaroen N, Buncherd H, Tun AW, Thanapongpichat S
    Korean J Parasitol, 2019 Aug;57(4):369-377.
    PMID: 31533403 DOI: 10.3347/kjp.2019.57.4.369
    Artemisinin-based combination therapy (ACT) resistance is widespread throughout the Greater Mekong Subregion. This raises concern over the antimalarial treatment in Thailand since it shares borders with Cambodia, Laos, and Myanmar where high ACT failure rates were reported. It is crucial to have information about the spread of ACT resistance for efficient planning and treatment. This study was to identify the molecular markers for antimalarial drug resistance: Pfkelch13 and Pfmdr1 mutations from 5 provinces of southern Thailand, from 2012 to 2017, of which 2 provinces on the Thai- Myanmar border (Chumphon and Ranong), one on Thai-Malaysia border (Yala) and 2 from non-border provinces (Phang Nga and Surat Thani). The results showed that C580Y mutation of Pfkelch13 was found mainly in the province on the Thai-Myanmar border. No mutations in the PfKelch13 gene were found in Surat Thani and Yala. The Pfmdr1 gene isolated from the Thai-Malaysia border was a different pattern from those found in other areas (100% N86Y) whereas wild type strain was present in Phang Nga. Our study indicated that the molecular markers of artemisinin resistance were spread in the provinces bordering along the Thai-Myanmar, and the pattern of Pfmdr1 mutations from the areas along the international border of Thailand differed from those of the non-border provinces. The information of the molecular markers from this study highlighted the recent spread of artemisinin resistant parasites from the endemic area, and the data will be useful for optimizing antimalarial treatment based on regional differences.
    Matched MeSH terms: Artemisinins/administration & dosage
  18. William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, et al.
    Emerg Infect Dis, 2011 Jul;17(7):1248-55.
    PMID: 21762579 DOI: 10.3201/eid1707.101017
    The simian parasite Plasmodium knowlesi causes severe human malaria; the optimal treatment remains unknown. We describe the clinical features, disease spectrum, and response to antimalarial chemotherapy, including artemether-lumefantrine and artesunate, in patients with P. knowlesi malaria diagnosed by PCR during December 2007-November 2009 at a tertiary care hospital in Sabah, Malaysia. Fifty-six patients had PCR-confirmed P. knowlesi monoinfection and clinical records available for review. Twenty-two (39%) had severe malaria; of these, 6 (27%) died. Thirteen (59%) had respiratory distress; 12 (55%), acute renal failure; and 12, shock. None experienced coma. Patients with uncomplicated disease received chloroquine, quinine, or artemether-lumefantrine, and those with severe disease received intravenous quinine or artesunate. Parasite clearance times were 1-2 days shorter with either artemether-lumefantrine or artesunate treatment. P. knowlesi is a major cause of severe and fatal malaria in Sabah. Artemisinin derivatives rapidly clear parasitemia and are efficacious in treating uncomplicated and severe knowlesi malaria.
    Matched MeSH terms: Artemisinins/administration & dosage*
  19. Lau YL, Tan LH, Chin LC, Fong MY, Noraishah MA, Rohela M
    Emerg Infect Dis, 2011 Jul;17(7):1314-5.
    PMID: 21762601 DOI: 10.3201/eid1707.101295
    Matched MeSH terms: Artemisinins/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links