Displaying all 14 publications

Abstract:
Sort:
  1. George E
    Med J Malaysia, 2001 Dec;56(4):397-400.
    PMID: 12014756
    Matched MeSH terms: beta-Thalassemia/epidemiology*
  2. Ismail JB
    Med J Malaysia, 1992 Jun;47(2):98-102.
    PMID: 1494340
    One thousand consecutive Brunei Darussalam patients referred with low Hb, and/or low MCV and MCH (Hb < 12.5g/dl, MCV < 76fl, MCH < 27pg) were studied in the laboratory for underlying haemoglobinopathies. 30.0% of such patients were proved to have either beta-thalassaemia trait, beta-thalassaemia major, Hb AE, Hb EE, Hb E beta-thalassaemia or Hb H disease. In some, the haemoglobin abnormality was not identified precisely. Alpha-thalassaemia was suspected in an additional 4.3% of cases but confirmation study by globin-chain synthesis was not available. Beta-thalassaemia trait which was the predominant disorder was equally distributed among the three major race groups of Brunei Darussalam. Hb E was found exclusive among the Malay population. Hb H disease appeared as more common among the Chinese or the Malays (p > 0.05). This study reveals that thalassaemia and haemoglobinopathies are prevalent in Brunei Darussalam.
    Matched MeSH terms: beta-Thalassemia/epidemiology
  3. Koh DXR, Raja Sabudin RZA, Mohd Yusoff M, Hussin NH, Ahmad R, Othman A, et al.
    Ann. Hum. Genet., 2017 Sep;81(5):205-212.
    PMID: 28620953 DOI: 10.1111/ahg.12201
    Thalassaemia is a public health problem in Malaysia, with each ethnic group having their own common mutations. However, there is a lack on data on the prevalence and common mutations among the indigenous people. This cross-sectional study was performed to determine the common mutations of α- and β-thalassaemia among the subethnic groups of Senoi, the largest Orang Asli group in Peninsular Malaysia. Blood samples collected from six Senoi subethnic groups were analysed for full blood count and haemoglobin analysis (HbAn). Samples with abnormal findings were then screened for α- and β-globin gene mutations. Out of the 752 samples collected, 255 showed abnormal HbAn results, and 122 cases showing abnormal red cell indices with normal HbAn findings were subjected to molecular screening. DNA analysis revealed a mixture of α- and β-globin gene mutations with 25 concomitant cases. The types of gene abnormalities detected for α-thalassaemia were termination codon (T>C) Hb CS (αCS α), Cd59 (G>A) haemoglobin Adana (Hb Adana) (αCd59 α), initiation codon (ATG>A-G) (αIniCd α), two-gene deletion (-SEA ), and single-gene 3.7-kb deletion (-α3.7 ). For β-thalassaemia, there were Cd26 (G>A) Hb E (βE ), Cd19 (A>G) Haemoglobin Malay (Hb Malay) (βCd19 ), and IVS 1-5 (G>C) (βIVS 1-5 ).
    Matched MeSH terms: beta-Thalassemia/epidemiology
  4. Tan JA, Lee PC, Wee YC, Tan KL, Mahali NF, George E, et al.
    PMID: 20871816 DOI: 10.1155/2010/706872
    Thalassemia can lead to severe transfusion-dependent anemia, and it is the most common genetic disorder in Malaysia. This paper aims to determine the prevalence of thalassemia in the Kadazandusuns, the largest indigenous group in Sabah, East Malaysia. α- and β-thalassemia were confirmed in 33.6% and 12.8%, of the individuals studied respectively. The high prevalence of α- and β-thalassemia in the Kadazandusuns indicates that thalassemia screening, genetic counseling, and prenatal diagnosis should be included as part of their healthcare system. This preliminary paper serves as a baseline for further investigations into the health and genetic defects of the major indigenous population in Sabah, East Malaysia.
    Matched MeSH terms: beta-Thalassemia/epidemiology*
  5. Hassan K
    PMID: 8629087
    Matched MeSH terms: beta-Thalassemia/epidemiology*
  6. Fong SM, Wong KJ, Fukushima M, Yeo TW
    Clin Infect Dis, 2015 Jun 15;60(12):1802-7.
    PMID: 25767257 DOI: 10.1093/cid/civ189
    Melioidosis is an important cause of community-acquired infection in Southeast Asia and northern Australia. Studies from endemic countries have demonstrated differences in the epidemiology and clinical features among children diagnosed with melioidosis. This suggests that local data are needed to determine the risk factors and outcome in specific areas.
    Matched MeSH terms: beta-Thalassemia/epidemiology*
  7. Chong YM, Tan JA, Zubaidah Z, Rahimah A, Kuldip K, George E
    Med J Malaysia, 2006 Jun;61(2):217-20.
    PMID: 16898315
    Thalassaemia is an inherited blood disorder and is a significant public health problem in Malaysia, with many not knowing they carry the gene for thalassaemia. The two major forms are alpha and beta thalassaemia. An individual can co-inherit both the alpha and beta thalassaemia genes. This study determined the frequency of concurrent carriers of alpha thalassaemia in 231 beta thalassaemia carriers. Gap-PCR was done on extracted DNA of the beta thalassaemia samples to check for alpha thalassaemia 1 molecular defect. Eight (3.5%) samples were found to have concurrently inherited the alpha thalassaemia 1 (- -SEA) deletion. The significant carrier rate for alpha thalassaemia 1 indicates the need for the implementation of DNA analysis to complement thalassaemia screening in high risk populations.
    Matched MeSH terms: beta-Thalassemia/epidemiology*
  8. Kham SK, Yin SK, Quah TC, Loong AM, Tan PL, Fraser A, et al.
    J Pediatr Hematol Oncol, 2004 Dec;26(12):817-9.
    PMID: 15591902
    DNA technology provides a new avenue to perform neonatal screening tests for single-gene diseases in populations of high frequency. Thalassemia is one of the high-frequency single-gene disorders affecting Singapore and many countries in the malaria belt. The authors explored the feasibility of using PCR-based diagnostic screening on 1,116 unselected sequential cord blood samples for neonatal screening. The cord blood samples were screened for the most common reported alpha- and beta-thalassemia mutations in each ethnic group (Chinese, Malays, and Indians) in a multiracial population. The carrier frequency for alpha-thalassemia mutations was about 6.4% in the Chinese (alpha deletions = 3.9%, alpha deletions = 2.5%), 4.8% in Malays, and 5.2% in Indians. Only alpha deletions were observed in the Chinese. The carrier frequency for beta-thalassemia mutations was 2.7% in the Chinese, 6.3% in Malays, and 0.7% in Indians. Extrapolating to the population distribution of Singapore, the authors found a higher overall expected carrier frequency for alpha- and beta-thalassemia mutations of 9% compared with a previous population study of 6% by phenotype. The highly accurate results make this molecular epidemiologic screening an ideal method to screen for and prevent severe thalassemia in high-risk populations.
    Matched MeSH terms: beta-Thalassemia/epidemiology*
  9. Laosombat V, Fucharoen SP, Panich V, Fucharoen G, Wongchanchailert M, Sriroongrueng W, et al.
    Am J Hematol, 1992 Nov;41(3):194-8.
    PMID: 1415194
    A total of 103 beta thalassemia genes from 78 children (45 with Hb E/beta thalassemia, 8 with beta thalassemia heterozygotes, and 25 with homozygous beta thalassemia) were analyzed using dot-blot hybridization of the polymerase chain reaction-amplified DNA and direct DNA sequencing. Nine mutations were characterized in 98/103 (95%) of beta thalassemia alleles, of which six (a 4 bp deletion in codons 41-42, a G-C transition at position 5 of IVS-1, A-G transition at codon 19, an A-T transition at codon 17, an A-G transition at position -28 upstream of the beta globin gene, a G-T transition at position 1 of IVS-1), accounted for 92%. The spectrum of beta thalassemia mutations in Chinese Thai is similar to that reported among the Chinese from other parts of the world. The distribution of beta thalassemia mutations in Muslim Thai is similar to that reported among Malaysians. The most common beta thalassemia mutation in Thai and Chinese Thai patients is the frameshift mutation at codons 41-42, in comparison with the Muslim Thai in whom the G-C transition at position 5 of the IVS-1 mutation predominates. The heterogeneity of molecular defects causing beta thalassemia should aid in the planning of a prenatal diagnosis program for beta thalassemia in the South of Thailand.
    Matched MeSH terms: beta-Thalassemia/epidemiology*
  10. Tan JA, George E, Tan KL, Chow T, Tan PC, Hassan J, et al.
    Clin Exp Med, 2004 Dec;4(3):142-7.
    PMID: 15599663 DOI: 10.1007/s10238-004-0048-x
    Beta-thalassemia is the most-common genetic disorder of hemoglobin synthesis in Malaysia, and about 4.5% of the population are heterozygous carriers of the disorder. Prenatal diagnosis was performed for 96 couples using the Amplification Refractory Mutation System and Gap-Polymerase Chain Reaction. We identified 17 beta-globin defects-initiation codon for translation (T-G), -29 (A-G), -28 (A-G), CAP +1 (A-C), CD 8/9 (+G), CD 15 (G-A), CD 17 (A-T), CD 19 (A-G), Hb E (G-A), IVS1-1 (G-T), IVS1-5 (G-C), CD 41/42 (-CTTT), CD 71-72 (+A), IVS2-654 (CT), poly A(A-G), 100-kb Ggamma(Agammadeltabeta) degrees and 45-kb Filipino deletions. The 192 beta-alleles studied comprised Chinese (151 patients), Malay (21), Orang Asli from East Malaysia (15), Filipino (1), Indian (1), Indonesian Chinese (2), and Thai (1). In the Chinese, 2 beta-globin defects at CD 41/42 and IVS2-654 were responsible for 74% of beta-thalassemia. beta-mutations at CD 19, IVS1-1 (G-T), IVS1-5, poly A, and hemoglobin E caused 76% of the hemoglobin disorders in the Malays. The Filipino 45-kb deletion caused 73.3% of bthalassemia in the Orang Asli. Using genomic sequencing, the rare Chinese beta-mutation at CD 43 (G-T) was confirmed in 2 Chinese, and the Mediterranean mutation IVS1-1 (G-A) was observed in a Malay beta-thalassemia carrier. The beta-globin mutations confirmed in this prenatal diagnosis study were heterogenous and 65 (68%) couples showed a different globin defect from each other. The use of specific molecular protocols has allowed rapid and successful prenatal diagnosis of beta-thalassemia in Malaysia.
    Matched MeSH terms: beta-Thalassemia/epidemiology
  11. Viprakasit V, Lee-Lee C, Chong QT, Lin KH, Khuhapinant A
    Int J Hematol, 2009 Nov;90(4):435-445.
    PMID: 19862602 DOI: 10.1007/s12185-009-0432-0
    Worldwide, thalassemia is the most commonly inherited hemolytic anemia, and it is most prevalent in Asia and the Middle East. Iron overload represents a significant problem in patients with transfusion-dependent beta-thalassemia. Chelation therapy with deferoxamine has traditionally been the standard therapeutic option but its usage is tempered by suboptimal patient compliance due to the discomfort and demands associated with the administration regimen. Therefore, a great deal of attention has been focused on the development of oral chelating agents. Deferiprone, even though available for nearly two decades in Asia with recent encouraging data on cardiac iron removal and long-term efficacy, has serious adverse effects including agranulocytosis and neutropenia which has impeded it from routine clinical practice. A novel oral chelator; deferasirox is effective throughout a 24 h dosing period and both preclinical and clinical data indicate that it successfully removes both hepatic and cardiac iron. In Asia, optimal management of severe thalassemia patients and the availability and access to oral iron chelators still presents a major challenge in many countries. In this regard, the development and implementation of consensus guidelines for management of Asian patients with transfusion-dependent thalassemia will be a major step towards improving and maintaining the continuity of patient care.
    Matched MeSH terms: beta-Thalassemia/epidemiology
  12. Abdullah UYH, Ibrahim HM, Mahmud NB, Salleh MZ, Teh LK, Noorizhab MNFB, et al.
    Hemoglobin, 2020 May;44(3):184-189.
    PMID: 32586164 DOI: 10.1080/03630269.2020.1781652
    Effective prevention of β-thalassemia (β-thal) requires strategies to detect at-risk couples. This is the first study attempting to assess the prevalence of silent β-thal carriers in the Malaysian population. Hematological and clinical parameters were evaluated in healthy blood donors and patients with β-thal trait, Hb E (HBB: c.79G>A)/β-thal and β-thal major (β-TM). β-Globin gene sequencing was carried out for 52 healthy blood donors, 48 patients with Hb E/β-thal, 34 patients with β-TM and 38 patients with β-thal trait. The prevalence of silent β-thal carrier phenotypes found in 25.0% of healthy Malaysian blood donors indicates the need for clinician's awareness of this type in evaluating β-thal in Malaysia. Patients with β-TM present at a significantly younger age at initial diagnosis and require more blood transfusions compared to those with Hb E/β-thal. The time at which genomic DNA was extracted after blood collection, particularly from patients with β-TM and Hb E/β-thal, was found to be an important determinant of the quality of the results of the β-globin sequencing. Public education and communication campaigns are recommended as apparently healthy individuals have few or no symptoms and normal or borderline hematological parameters. β-Globin gene mutation characterization and screening for silent β-thal carriers in regions prevalent with β-thal are recommended to develop more effective genetic counseling and management of β-thal.
    Matched MeSH terms: beta-Thalassemia/epidemiology*
  13. Lee TY, Muniandy L, Teh LK, Abdullah M, George E, Sathar J, et al.
    Turk J Haematol, 2016 Mar 05;33(1):15-20.
    PMID: 26377036 DOI: 10.4274/tjh.2014.0197
    The diverse clinical phenotype of hemoglobin E (HbE)/β-thalassemia has not only confounded clinicians in matters of patient management but has also led scientists to investigate the complex mechanisms involved in maintaining the delicate red cell environment where, even with apparent similarities of α- and β-globin genotypes, the phenotype tells a different story. The BTB and CNC homology 1 (BACH1) protein is known to regulate α- and β-globin gene transcriptions during the terminal differentiation of erythroid cells. With the mutations involved in HbE/β-thalassemia disorder, we studied the role of BACH1 in compensating for the globin chain imbalance, albeit for fine-tuning purposes.
    Matched MeSH terms: beta-Thalassemia/epidemiology
  14. Furuumi H, Firdous N, Inoue T, Ohta H, Winichagoon P, Fucharoen S, et al.
    Hemoglobin, 1998 Mar;22(2):141-51.
    PMID: 9576331
    We have systematically analyzed beta-thalassemia genes using polymerase chain reaction-related techniques, dot-blot hybridization with oligonucleotide probes, allele specific-polymerase chain reaction, and sequencing of amplified DNA fragments from 41 unrelated patients, including 37 beta-thalassemia homozygotes, three with beta-thalassemia/Hb E, and one with beta-thalassemia/Hb S. Four different beta-thalassemia mutations were detected in 78 alleles. These are the IVS-I-5 (G-->C), codon 30 (AGG-->ACG) [also indicated as IVS-I (-1)], IVS-I-1 (G-->A), and codons 41/42 (-TTCT) mutations. The distribution of the beta-thalassemia mutations in the Maldives is 58 alleles (74.3%) with the IVS-I-5 (G-->C) mutation, 12 (15.4%) with the codon 30 (AGG-->ACG) mutation, seven (9%) with the IVS-I-1 (G-->A) mutation, and one with the codons 41/42 (-TTCT) mutation. The first three mutations account for 98.7% of the total number of beta-thalassemia chromosomes studied. These mutations are clustered in the region spanning 6 bp around the junction of exon 1 and the first intervening sequence of the beta-globin gene. These observations have significant implications for setting up a thalassemia prevention and control program in the Maldives. Analysis of haplotypes and frameworks of chromosomes bearing each beta-thalassemia mutation suggested that the origin and spread of these mutations were reflected by the historical record.
    Matched MeSH terms: beta-Thalassemia/epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links