RESULTS: Thirty Hy-Line Gray and thirty Lohmann Pink laying hens were used in this study to determine the impact of cecal microbial structure on odor production of laying hens. The hens were managed under the same husbandry and dietary regimes. Results of in vivo experiments showed a lower hydrogen sulfide (H2S) production from Hy-Line hens and a lower concentration of soluble sulfide (S2-) but a higher concentration of butyrate in the cecal content of the Hy-Line hens compared to Lohmann Pink hens (P 0.05). Significant microbial structural differences existed between the two breed groups. The relative abundance of some butyrate producers (including Butyricicoccus, Butyricimonas and Roseburia) and sulfate-reducing bacteria (including Mailhella and Lawsonia) were found to be significantly correlated with odor production and were shown to be different in the 16S rRNA and PCR data between two breed groups. Furthermore, some bacterial metabolism pathways associated with energy extraction and carbohydrate utilization (oxidative phosphorylation, pyruvate metabolism, energy metabolism, two component system and secretion system) were overrepresented in the Hy-Line hens, while several amino acid metabolism-associated pathways (amino acid related enzymes, arginine and proline metabolism, and alanine-aspartate and glutamate metabolism) were more prevalent in the Lohmann hens.
CONCLUSION: The results of this study suggest that genotype of laying hens influence cecal microbiota, which in turn modulates their odor production. Our study provides references for breeding and enteric manipulation for defined microbiota to reduce odor gas emission.
RESULTS: Present results showed that, Se and Vit E synergistic effect was clear in plasma IgM level at day 42 and in splenic cytokines expression (TNF-α, IFN-γ, IL-2, IL-10). The combination of 0.3 mg/kg ADS18-Se with 100 mg/kg Vit E showed the highest IgM level compared to Vit E- SS complex. The combination of either SS or ADS18-Se with Vit E had no significant effect on IFN- γ and IL-10 compared to Vit E alone, while Vit E alone showed the significantly lowest TNF-α compared to the Se combinations. Supplementation of 100 mg/kg Vit E had no effect on microbial population except a slight reduction in Salmonella spp. The main effect of Se sources was that both sources increased the day 42 IgA and IgG level compared to NS group. ADS18-Se modulate the caecum microbial population via enhancing beneficial bacteria and suppressing the E-coli and Salmonella spp. while both Se and Vit E factors had no effect on lymphoid organ weights.
CONCLUSIONS: The inclusion of 100 mg/kg Vit E with 0.3 mg/kg ADS18-Se, effectively could support the immune system through regulation of some cytokines expression and immunoglobulin levels more than using ADS18-Se alone, while no difference was observed between using SS alone or combined with Vit E.