Displaying all 11 publications

Abstract:
Sort:
  1. Dalu T, Wasserman RJ, Dalu MT
    Glob Chang Biol, 2017 03;23(3):983-985.
    PMID: 27869348 DOI: 10.1111/gcb.13549
    Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition.
    Matched MeSH terms: Desert Climate*
  2. Willmott AGB, Hayes M, Waldock KAM, Relf RL, Watkins ER, James CA, et al.
    J Sports Sci, 2017 Nov;35(22):2249-2256.
    PMID: 27935427 DOI: 10.1080/02640414.2016.1265142
    Multistage, ultra-endurance events in hot, humid conditions necessitate thermal adaptation, often achieved through short term heat acclimation (STHA), to improve performance by reducing thermoregulatory strain and perceptions of heat stress. This study investigated the physiological, perceptual and immunological responses to STHA prior to the Marathon des Sables. Eight athletes (age 42 ± 4 years and body mass 81.9 ± 15.0 kg) completed 4 days of controlled hyperthermia STHA (60 min·day‒1, 45°C and 30% relative humidity). Pre, during and post sessions, physiological and perceptual measures were recorded. Immunological measures were recorded pre-post sessions 1 and 4. STHA improved thermal comfort (P = 0.02), sensation (P = 0.03) and perceived exertion (P = 0.04). A dissociated relationship between perceptual fatigue and Tre was evident after STHA, with reductions in perceived Physical (P = 0.04) and General (P = 0.04) fatigue. Exercising Tre and HR did not change (P > 0.05) however, sweat rate increased 14% (P = 0.02). No changes were found in white blood cell counts or content (P > 0.05). Four days of STHA facilitates effective perceptual adaptations, without compromising immune status prior to an ultra-endurance race in heat stress. A greater physiological strain is required to confer optimal physiological adaptations.
    Matched MeSH terms: Desert Climate*
  3. Wang Z, Zhang F, Zhang X, Chan NW, Kung HT, Ariken M, et al.
    Sci Total Environ, 2021 Feb 12;775:145807.
    PMID: 33618298 DOI: 10.1016/j.scitotenv.2021.145807
    Soil salinization is an extremely serious land degradation problem in arid and semi-arid regions that hinders the sustainable development of agriculture and food security. Information and research on soil salinity using remote sensing (RS) technology provide a quick and accurate assessment and solutions to address this problem. This study aims to compare the capabilities of Landsat-8 OLI and Sentinel-2A MSI in RS prediction and exploration of the potential application of derivatives to RS prediction of salinized soils. It explores the ability of derivatives to be used in the Landsat-8 OLI and Sentinel-2A MSI multispectral data, and it was used as a data source as well as to address the adaptability of salinity prediction on a regional scale. The two-dimensional (2D) and three-dimensional (3D) optimal spectral indices are used to screen the bands that are most sensitive to soil salinity (0-10 cm), and RS data and topographic factors are combined with machine learning to construct a comprehensive soil salinity estimation model based on gray correlation analysis. The results are as follows: (1) The optimal spectral index (2D, 3D) can effectively consider possible combinations of the bands between the interaction effects and responding to sensitive bands of soil properties to circumvent the problem of applicability of spectral indices in different regions; (2) Both the Landsat-8 OLI and Sentinel-2A MSI multispectral RS data sources, after the first-order derivative techniques are all processed, show improvements in the prediction accuracy of the model; (3) The best performance/accuracy of the predictive model is for sentinel data under first-order derivatives. This study compared the capabilities of Landsat-8 OLI and Sentinel-2A MSI in RS prediction in finding the potential application of derivatives to RS prediction of salinized soils, with the results providing some theoretical basis and technical guidance for salinized soil prediction and environmental management planning.
    Matched MeSH terms: Desert Climate
  4. Asem MD, Salam N, Idris H, Zhang XT, Bull AT, Li WJ, et al.
    Int J Syst Evol Microbiol, 2020 May;70(5):3210-3218.
    PMID: 32320378 DOI: 10.1099/ijsem.0.004158
    The taxonomic status of a Nocardiopsis strain, designated H13T, isolated from a high altitude Atacama Desert soil, was established by using a polyphasic approach. The strain was found to have chemotaxonomic, cultural and morphological characteristics consistent with its classification within the genus Nocardiopsis and formed a well-supported clade in the Nocardiopsis phylogenomic tree together with the type strains of Nocardiopsis alborubida, Nocardiopsis dassonvillei and Nocardiopsis synnematoformans. Strain H13T was distinguished from its closest relatives by low average nucleotide identity (93.2-94.9 %) and in silico DNA-DNA hybridization (52.5-62.4 %) values calculated from draft genome assemblies and by a range of phenotypic properties. On the basis of these results, it is proposed that the isolate be assigned to the genus Nocardiopsis as Nocardiopsis deserti sp. nov. with isolate H13T (=CGMCC 4.7585T=KCTC 49249T) as the type strain.
    Matched MeSH terms: Desert Climate*
  5. Devendra, C.
    ASM Science Journal, 2011;5(2):139-150.
    MyJurnal
    The effects of anticipated climate change and the potential impact on animal production are discussed in the context of varying biophysical features, agro-ecological zones (AEZs), ecosystems, land use, and responses in animal genetic diversity and production. The AEZs in Asia have great diversity in their links to food production in crop-animal small farm systems, the poverty complex and livelihoods of the poor. In these environments. climate change effects on animals were mediated through heat stress, water availability, quantity and quality of the available feed resources, type of production system and productivity. The responses to heat stress are tabulated and they vary according to species, breeds within-species, AEZs, physiological and nutritional status, genetic potential and multifunctionality. Among ruminant production systems, dairy production was especially vulnerable to heat stress. Interestingly in India, buffalo numbers owned largely by the landless and small farmers in the semi-arid and arid regions have grown twice as fast as the buffalo population in the irrigated areas. The implications and strategies to cope with climate change involve mitigation, adaptation and policy. The principal strategy is targetting to the reduce on in greenhouse gas (GHG) emission from the agricultural sector from enteric fermentation and manure, and ways to intensify C sequestration. An important link is that of breeding and conserving indigenous animal genetic resources as a means to mitigate climate change, with associated benefits to the trade of live animals and animal products. Improved integrated tree crops-ruminant systems are an important pathway to enhance C sequestration. The opportunities for research and development (R&D) are enormous and they would need policy support and large investments to provide improved understanding of ways to ensure sustainable animal production systems. Coping with the totality of the effects and impact of climate change constitutes the challenges for agricultural R&D and the improved livelihood of the resource-poor in the future.
    Matched MeSH terms: Desert Climate
  6. Golkarian A, Naghibi SA, Kalantar B, Pradhan B
    Environ Monit Assess, 2018 Feb 17;190(3):149.
    PMID: 29455381 DOI: 10.1007/s10661-018-6507-8
    Ever increasing demand for water resources for different purposes makes it essential to have better understanding and knowledge about water resources. As known, groundwater resources are one of the main water resources especially in countries with arid climatic condition. Thus, this study seeks to provide groundwater potential maps (GPMs) employing new algorithms. Accordingly, this study aims to validate the performance of C5.0, random forest (RF), and multivariate adaptive regression splines (MARS) algorithms for generating GPMs in the eastern part of Mashhad Plain, Iran. For this purpose, a dataset was produced consisting of spring locations as indicator and groundwater-conditioning factors (GCFs) as input. In this research, 13 GCFs were selected including altitude, slope aspect, slope angle, plan curvature, profile curvature, topographic wetness index (TWI), slope length, distance from rivers and faults, rivers and faults density, land use, and lithology. The mentioned dataset was divided into two classes of training and validation with 70 and 30% of the springs, respectively. Then, C5.0, RF, and MARS algorithms were employed using R statistical software, and the final values were transformed into GPMs. Finally, two evaluation criteria including Kappa and area under receiver operating characteristics curve (AUC-ROC) were calculated. According to the findings of this research, MARS had the best performance with AUC-ROC of 84.2%, followed by RF and C5.0 algorithms with AUC-ROC values of 79.7 and 77.3%, respectively. The results indicated that AUC-ROC values for the employed models are more than 70% which shows their acceptable performance. As a conclusion, the produced methodology could be used in other geographical areas. GPMs could be used by water resource managers and related organizations to accelerate and facilitate water resource exploitation.
    Matched MeSH terms: Desert Climate
  7. Dalu T, Wasserman RJ, Wu Q, Froneman WP, Weyl OLF
    Environ Sci Pollut Res Int, 2018 Jan;25(3):2842-2852.
    PMID: 29143261 DOI: 10.1007/s11356-017-0728-1
    The effect of metals on environmental health is well documented and monitoring these and other pollutants is considered an important part of environmental management. Developing countries are yet to fully appreciate the direct impacts of pollution on aquatic ecosystems and as such, information on pollution dynamics is scant. Here, we assessed the temporal and spatial dynamics of stream sediment metal and nutrient concentrations using contaminant indices (e.g. enrichment factors, pollution load and toxic risk indices) in an arid temperate environment over the wet and dry seasons. The mean sediment nutrient, organic matter and metal concentration were highest during the dry season, with high values being observed for the urban environment. Sediment contaminant assessment scores indicated that during the wet season, the sediment quality was acceptable, but not so during the dry season. The dry season had low to moderate levels of enrichment for metals B, Cu, Cr, Fe, Mg, K and Zn. Overall, applying the sediment pollution load index highlighted poor quality river sediment along the length of the river. Toxic risk index indicated that most sites posed no toxic risk. The results of this study highlighted that river discharge plays a major role in structuring temporal differences in sediment quality. It was also evident that infrastructure degradation was likely contributing to the observed state of the river quality. The study contributes to our understanding of pollution dynamics in arid temperate landscapes where vast temporal differences in base flow characterise the riverscape. Such information is further useful for contrasting sediment pollution dynamics in aquatic environments with other climatic regions.
    Matched MeSH terms: Desert Climate
  8. Busarakam K, Brown R, Bull AT, Tan GY, Zucchi TD, da Silva LJ, et al.
    Antonie Van Leeuwenhoek, 2016 Feb;109(2):319-34.
    PMID: 26809280 DOI: 10.1007/s10482-015-0635-8
    The taxonomic position of 26 filamentous actinobacteria isolated from a hyper-arid Atacama Desert soil and 2 from an arid Australian composite soil was established using a polyphasic approach. All of the isolates gave the diagnostic amplification product using 16S rRNA oligonucleotide primers specific for the genus Amycolatopsis. Representative isolates had chemotaxonomic and morphological properties typical of members of the genus Amycolatopsis. 16S rRNA gene analyses showed that all of the isolates belong to the Amycolatopsis methanolica 16S rRNA gene clade. The Atacama Desert isolates were assigned to one or other of two recognised species, namely Amycolatopsis ruanii and Amycolatopsis thermalba, based on 16S rRNA gene sequence, DNA:DNA relatedness and phenotypic data; emended descriptions are given for these species. In contrast, the two strains from the arid Australian composite soil, isolates GY024(T) and GY142, formed a distinct branch at the periphery of the A. methanolica 16S rRNA phyletic line, a taxon that was supported by all of the tree-making algorithms and by a 100 % bootstrap value. These strains shared a high degree of DNA:DNA relatedness and have many phenotypic properties in common, some of which distinguished them from all of the constituent species classified in the A. methanolica 16S rRNA clade. Isolates GY024(T) and GY142 merit recognition as a new species within the A. methanolica group of thermophilic strains. The name proposed for the new species is Amycolatopsis deserti sp. nov.; the type strain is GY024(T) (=NCIMB 14972(T) = NRRL B-65266(T)).
    Matched MeSH terms: Desert Climate
  9. Malaspinas AS, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, et al.
    Nature, 2016 Oct 13;538(7624):207-214.
    PMID: 27654914 DOI: 10.1038/nature18299
    The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama-Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25-40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10-32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama-Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51-72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.
    Matched MeSH terms: Desert Climate
  10. Sher A, Arfat MY, Ul-Allah S, Sattar A, Ijaz M, Manaf A, et al.
    PLoS One, 2021;16(12):e0260673.
    PMID: 34932582 DOI: 10.1371/journal.pone.0260673
    Sunflower production is significantly lower in arid and semi-arid regions due to various crop management problem. Conservation of tillage provides the most excellent opportunity to reduce degradation of soil reserves and increase soil productivity. The main objective of this study was to investigate the combined effects of conservation tillage and drought stress on growth and productivity of different sunflower hybrids. Experimental treatments included two sunflower hybrids ('NK-Senji' and 'S-278'), two drought stress treatments (i.e., well-watered and drought stress at flowering and grain filling stages) and three tillage practices (i.e., conservation, minimum and deep tillage). The results indicated that morphological and physiological parameters, and yield-related traits were significantly (P≤0.05) affected by all individual factors; however, their interactive effects were non-significant. Among sunflower hybrids, 'NK-Senji' performed better for morphological, physiological, and yield-related traits than 'S-278'. Similarly, conservation tillage observed better traits compared to the rest of the tillage practices included in the study. Nonetheless, conservation tillage improved growth and yield-related traits of hybrid 'NK-Senji' under drought stress. Hence, it is concluded that conservation tillage can improve the productivity of sunflower under low moisture availability. Therefore, conservation tillage could be suggested in the areas of lower water ability to improve sunflower production. Nonetheless, sunflower hybrids or varieties need thorough testing for their adaptability to conservation tillage and low moisture availability before making recommendations.
    Matched MeSH terms: Desert Climate
  11. Idris H, Nouioui I, Pathom-Aree W, Castro JF, Bull AT, Andrews BA, et al.
    Antonie Van Leeuwenhoek, 2018 Sep;111(9):1523-1533.
    PMID: 29428970 DOI: 10.1007/s10482-018-1039-3
    The taxonomic position of a novel Amycolatopsis strain isolated from a high altitude Atacama Desert subsurface soil was established using a polyphasic approach. The strain, isolate H5T, was shown to have chemical properties typical of members of the genus Amycolatopsis such as meso-diaminopimelic acid as the diamino acid in the cell wall peptidoglycan, arabinose and galactose as diagnostic sugars and MK-9(H4) as the predominant isoprenologue. It also has cultural and morphological properties consistent with its classification in the genus, notably the formation of branching substrate hyphae which fragment into rod-like elements. 16S rRNA gene sequence analyses showed that the strain is closely related to the type strain of Amycolatopsis mediterranei but could be distinguished from this and other related Amycolatopsis strains using a broad range of phenotypic properties. It was separated readily from the type strain of Amycolatopsis balhymycina, its near phylogenetic neighbour, based on multi-locus sequence data, by low average nucleotide identity (92.9%) and in silico DNA/DNA relatedness values (51.3%) calculated from draft genome assemblies. Consequently, the strain is considered to represent a novel species of Amycolatopsis for which the name Amycolatopsis vastitatis sp. nov. is proposed. The type strain is H5T (= NCIMB 14970T = NRRL B-65279T).
    Matched MeSH terms: Desert Climate
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links