METHODS: Genomic DNA of Indonesian black fly samples were extracted and sequenced, producing 86 COI sequences in total. Two hundred four COI sequences, including 118 GenBank sequences, were analysed. Maximum likelihood (ML) and Bayesian inference (BI) trees were constructed and species delimitation analyses, including ASAP, GMYC and single PTP, were performed to determine whether the species of Indonesian black flies could be delineated. Intra- and interspecific genetic distances were also calculated and the efficacy of COI sequences for species identification was tested.
RESULTS: The DNA barcodes successfully distinguished most morphologically distinct species (> 80% of sampled taxa). Nonetheless, high maximum intraspecific distances (3.32-13.94%) in 11 species suggested cryptic diversity. Notably, populations of the common taxa Simulium (Gomphostilbia) cheongi, S. (Gomphostilbia) sheilae, S. (Nevermannia) feuerborni and S. (Simulium) tani in the islands of Indonesia were genetically distinct from those on the Southeast Asian mainland (Malaysia and Thailand). Integrated morphological, cytogenetic and nuclear DNA studies are warranted to clarify the taxonomic status of these more complex taxa.
CONCLUSIONS: The findings showed that COI barcoding is a promising taxonomic tool for Indonesian black flies. The DNA barcodes will aid in correct identification and genetic study of Indonesian black flies, which will be helpful in the control and management of potential vector species.
METHODS: In this study, 135 mitochondrial cytochrome c oxidase subunit I (COI) sequences were established for 45 species in the genus Simulium in Vietnam, encompassing three subgenera (Gomphostilbia, Nevermannia, and Simulium), with 64 paratypes of 27 species and 16 topotypes of six species. Of these COI sequences, 71, representing 27 species, are reported for the first time.
RESULTS: Combined with GenBank sequences of specimens from Malaysia, Myanmar, Thailand, and Vietnam, a total of 234 DNA barcodes of 53 nominal species resulted in a 71% success rate for species identification. Species from the non-monophyletic Simulium asakoae, S. feuerborni, S. multistriatum, S. striatum, S. tuberosum, and S. variegatum species groups were associated with ambiguous or incorrect identifications. Pairwise distances, phylogenetics, and species delimitation analyses revealed a high level of cryptic diversity, with discovery of 15 cryptic taxa. The current study also revealed the limited utility of a fast-evolving nuclear gene, big zinc finger (BZF), in discriminating closely related, morphologically similar nominal species of the S. asakoae species group.
CONCLUSION: This study represents the first comprehensive molecular genetic analysis of the black fly fauna in Vietnam to our knowledge, providing a foundation for future research. DNA barcoding exhibits varying levels of differentiating efficiency across species groups but is valuable in the discovery of cryptic diversity.