Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Ariffen NA, Ornellas AA, Alves G, Shana'ah AM, Sharma S, Kankel S, et al.
    Pathol Res Pract, 2024 Apr;256:155269.
    PMID: 38522124 DOI: 10.1016/j.prp.2024.155269
    In various solid tumors and corresponding cell lines, prior research has identified acquired copy number variations (CNVs) encompassing centromeric satellite-DNA sequences. This observation emerged from the application of centromeric probes (satellite-DNA) as controls in molecular cytogenetic investigations and diagnostics, although these accounts were largely anecdotal. In this study, we conducted a systematic screening for satellite-DNA sequence amplification in 31 prostate cancer (PCa) samples, a prevalent malignancy in men characterized by discernible molecular cytogenetic aberrations. Notably, PCa-typical genetic aberrations, such as TMPRSS2-ERG gene rearrangements and PTEN deletion, were identified in 12 and 6 out of the 31 PCa samples, respectively. Overall, PCa exhibited genomic instability marked by chromosomal gain or loss of signals across nearly all tested satellite-DNA regions, with particular emphasis on the Y-chromosome (18/31 cases). Remarkably, 5/12 PCa samples representing more advanced metastatic cancer displayed amplification of one or two satellite DNA stretches each, being detectable as blocks analogous to homogenously staining regions. Notably, these stretches included α-satellite DNA derived from chromosomes 2, 3, 4, 15, and 20, as well as satellite-III DNAs (D1Z1 and DYZ1). These findings align with recent discoveries indicating that α-satellite DNAs are expressed as long-non-coding RNAs in advanced cancer, particularly in the context of PCa.
    Matched MeSH terms: DNA Copy Number Variations
  2. Shi W, Massaia A, Louzada S, Banerjee R, Hallast P, Chen Y, et al.
    Hum Genet, 2018 Jan;137(1):73-83.
    PMID: 29209947 DOI: 10.1007/s00439-017-1857-9
    We describe the variation in copy number of a ~ 10 kb region overlapping the long intergenic noncoding RNA (lincRNA) gene, TTTY22, within the IR3 inverted repeat on the short arm of the human Y chromosome, leading to individuals with 0-3 copies of this region in the general population. Variation of this CNV is common, with 266 individuals having 0 copies, 943 (including the reference sequence) having 1, 23 having 2 copies, and two having 3 copies, and was validated by breakpoint PCR, fibre-FISH, and 10× Genomics Chromium linked-read sequencing in subsets of 1234 individuals from the 1000 Genomes Project. Mapping the changes in copy number to the phylogeny of these Y chromosomes previously established by the Project identified at least 20 mutational events, and investigation of flanking paralogous sequence variants showed that the mutations involved flanking sequences in 18 of these, and could extend over > 30 kb of DNA. While either gene conversion or double crossover between misaligned sister chromatids could formally explain the 0-2 copy events, gene conversion is the more likely mechanism, and these events include the longest non-allelic gene conversion reported thus far. Chromosomes with three copies of this CNV have arisen just once in our data set via another mechanism: duplication of 420 kb that places the third copy 230 kb proximal to the existing proximal copy. Our results establish gene conversion as a previously under-appreciated mechanism of generating copy number changes in humans and reveal the exceptionally large size of the conversion events that can occur.
    Matched MeSH terms: DNA Copy Number Variations*
  3. Ching HC, Naidu R, Seong MK, Har YC, Taib NA
    Int J Oncol, 2011 Sep;39(3):621-33.
    PMID: 21687935 DOI: 10.3892/ijo.2011.1081
    Breast cancer is a heterogeneous disease, marked by extensive chromosomal aberrations. In this study, we aimed to explicate the underlying chromosomal copy number (CN) alterations and loss of heterozygosity (LOH) implicated in a cohort of Malaysian hospital-based primary breast carcinoma samples using a single nucleotide polymorphism (SNP) array platform. The analysis was conducted by hybridizing the extracted DNA of 70 primary breast carcinomas and 37 normal peripheral blood samples to the Affymetrix 250K Sty SNP arrays. Locus-specific CN aberrations and LOH were statistically summarized using the binary segmentation algorithm and hidden Markov model. Selected genes from the SNP array analysis were also validated using quantitative real-time PCR. The merging of CN and LOH data fabricated distinctive integrated alteration profiles, which were comprised of finely demarcated minimal sites of aberrations. The most prevalent gains (≥ 30%) were detected at the 8q arm: 8q23.1, 8q23.3, 8q24.11, 8q24.13, 8q24.21, 8q24.22, 8q24.23 and 8q24.3, whilst the most ubiquitous losses (≥ 20%) were noted at the 8p12, 8p21.1, 8p21.2, 8p21.1-p21.2, 8p21.3, 8p22, 8p23.1, 8p23.1‑p23.2, 8p23.3, 17p11.2, 17p12, 17p11.2-p12, 17p13.1 and 17p13.2 regions. Copy-neutral LOH was characterized as the most prevailing LOH event, in which the most frequent distributions (≥ 30%) were revealed at 3p21.31, 5q33.2, 12q24.12, 12q24.12‑q24.13 and 14q23.1. These findings offer compre-hensive genome-wide views on breast cancer genomic changes, where the most recurrent gain, loss and copy-neutral LOH events were harboured within the 8q24.21, 8p21.1 and 14q23.1 loci, respectively. This will facilitate the uncovering of true driver genes pertinent to breast cancer biology and the develop-ment of prospective therapeutics.
    Matched MeSH terms: DNA Copy Number Variations*
  4. Shaik Alaudeen SR, Mohd Shah AS, Abdul Talib N, Abdullah A
    MyJurnal
    Introduction: Hypertension related morbidities and mortalities around the world show a gradual increase and early detection and prevention are advocated. The Database of Genomic Variants (DGV) has associated variation in DNA sequences called copy number variation (CNV) with susceptibility to common diseases. However, little is known about CNV role in essential hypertension. Thus, this study aimed to characterize the CNV esv27061 among prehypertensive and hypertensive young adults in Malaysia. Materials and method: In this comparative cross-sectional study, 104 subjects living in Kuantan who gave voluntary consent to participate are recruited and divided into three groups; control (43 subjects), prehypertensive (38 subjects) and mild hypertensive (23 subjects). An optimized droplet digital polymerase chain reaction (ddPCR) was used in the determination of CNV esv27061 in this study. Results: All subjects in the control (n=38; 88.4% gain), prehypertensive (n=33; 86.8% gain) and mild hypertensive (n=21; 91.3% gain) groups had CNV gain (copy number > 2) while 11.6% of control, 13.2% of prehypertensive and 8.7% of mild hypertensive subjects exhibited normal copies (copy number = 2). Conclusion: The present preliminary finding was consistent with the Database of Genomic Variants (DGV) which stated that CNV esv27061 showed more gain than loss.
    Matched MeSH terms: DNA Copy Number Variations
  5. Chai HC, Mahendran R, Ong KC, Chua KH
    Genes Cells, 2024 Jul;29(7):599-607.
    PMID: 38782708 DOI: 10.1111/gtc.13129
    WT 9-12 is one of the cell lines commonly used for autosomal dominant polycystic kidney disease (ADPKD) studies. Previous studies had described the PKD gene mutations and polycystin expression in WT 9-12. Nonetheless, the mutations occurring in other ADPKD-associated genes have not been investigated. This study aims to revisit these mutations and protein profile of WT 9-12. Whole genome sequencing verified the presence of truncation mutation at amino acid 2556 (Q2556X) in PKD1 gene of WT 9-12. Besides, those variations with high impacts included single nucleotide polymorphisms (rs8054182, rs117006360, and rs12925771) and insertions and deletions (InDels) (rs145602984 and rs55980345) in PKD1L2; InDel (rs1296698195) in PKD1L3; and copy number variations in GANAB. Protein profiles generated from the total proteins of WT 9-12 and HK-2 cells were compared using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Polycystin-1 was absent in WT 9-12. The gene ontology enrichment and reactome pathway analyses revealed that the upregulated and downregulated proteins of WT 9-12 relative to HK-2 cell line leaded to signaling pathways related to immune response and amino acid metabolism, respectively. The ADPKD-related mutations and signaling pathways associated with differentially expressed proteins in WT 9-12 may help researchers in cell line selection for their studies.
    Matched MeSH terms: DNA Copy Number Variations
  6. Siti Radziah Shaik Alaudeen, Aszrin Abdullah, Azarisman Shah Mohd Shah, Norlelawati Abdul Talib
    MyJurnal
    Copy number variation (CNV) caused by changes in DNA sequences of 1000
    or more bases is implicated with susceptibility to common diseases. A study on CNV
    esv27061 among hypertensive Australian adults reported association with high blood
    pressure (BP). In Malaysia, no study on CNV among hypertensive young adults is
    available. Thus, this investigation aimed to assess the CNV esv27061 of young Malaysian
    adults with high blood pressure using optimized ddPCR. (Copied from article).
    Matched MeSH terms: DNA Copy Number Variations
  7. Fu R, Mokhtar SS, Phipps ME, Hoh BP, Xu S
    Eur J Hum Genet, 2018 06;26(6):886-897.
    PMID: 29476164 DOI: 10.1038/s41431-018-0120-8
    Copy number variations (CNVs) are genomic structural variations that result from the deletion or duplication of large genomic segments. The characterization of CNVs is largely underrepresented, particularly those of indigenous populations, such as the Orang Asli in Peninsular Malaysia. In the present study, we first characterized the genome-wide CNVs of four major native populations from Peninsular Malaysia, including the Malays and three Orang Asli populations; namely, Proto-Malay, Senoi, and Negrito (collectively called PM). We subsequently assessed the distribution of CNVs across the four populations. The resulting global CNV map revealed 3102 CNVs, with an average of more than 100 CNVs per individual. We identified genes harboring CNVs that are highly differentiated between PM and global populations, indicating that these genes are predominantly enriched in immune responses and defense functions, including APOBEC3A_B, beta-defensin genes, and CCL3L1, followed by other biological functions, such as drug and toxin metabolism and responses to radiation, suggesting some attributions between CNV variations and adaptations of the PM groups to the local environmental conditions of tropical rainforests.
    Matched MeSH terms: DNA Copy Number Variations
  8. Haridan US, Mokhtar U, Machado LR, Abdul Aziz AT, Shueb RH, Zaid M, et al.
    PLoS One, 2015;10(1):e0116791.
    PMID: 25594501 DOI: 10.1371/journal.pone.0116791
    The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (PRT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method's performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs.
    Matched MeSH terms: DNA Copy Number Variations/genetics
  9. Mokhtar SS, Marshall CR, Phipps ME, Thiruvahindrapuram B, Lionel AC, Scherer SW, et al.
    PLoS One, 2014;9(6):e100371.
    PMID: 24956385 DOI: 10.1371/journal.pone.0100371
    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  10. Zain SM, Mohamed R, Cooper DN, Razali R, Rampal S, Mahadeva S, et al.
    PLoS One, 2014;9(4):e95604.
    PMID: 24743702 DOI: 10.1371/journal.pone.0095604
    Between 10 and 25% of individuals with non-alcoholic fatty liver disease (NAFLD) develop hepatic fibrosis leading to cirrhosis and hepatocellular carcinoma (HCC). To investigate the molecular basis of disease progression, we performed a genome-wide analysis of copy number variation (CNV) in a total of 49 patients with NAFLD [10 simple steatosis and 39 non-alcoholic steatohepatitis (NASH)] and 49 matched controls using high-density comparative genomic hybridization (CGH) microarrays. A total of 11 CNVs were found to be unique to individuals with simple steatosis, whilst 22 were common between simple steatosis and NASH, and 224 were unique to NASH. We postulated that these CNVs could be involved in the pathogenesis of NAFLD progression. After stringent filtering, we identified four rare and/or novel CNVs that may influence the pathogenesis of NASH. Two of these CNVs, located at 13q12.11 and 12q13.2 respectively, harbour the exportin 4 (XPO4) and phosphodiesterase 1B (PDE1B) genes which are already known to be involved in the etiology of liver cirrhosis and HCC. Cross-comparison of the genes located at these four CNV loci with genes already known to be associated with NAFLD yielded a set of genes associated with shared biological processes including cell death, the key process involved in 'second hit' hepatic injury. To our knowledge, this pilot study is the first to provide CNV information of potential relevance to the NAFLD spectrum. These data could prove invaluable in predicting patients at risk of developing NAFLD and more importantly, those who will subsequently progress to NASH.
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  11. Hoh BP, Sam SS, Umi SH, Mahiran M, Nik Khairudin NY, Rafidah Hanim S, et al.
    Genet. Mol. Res., 2014;13(1):980-5.
    PMID: 24634119 DOI: 10.4238/2014.February.19.9
    Copy number variation (CNV) is a form of genetic variation in addition to single nucleotide polymorphisms. The significance of CNV in the manifestation of a number of diseases is only recently receiving considerable attention. We genotyped 163 dengue patients from Peninsular Malaysia for genes possibly linked to dengue infection using quantitative real-time PCR. Here, we report a serendipitous discovery of a novel rare CNV of the ABCF1 gene among the dengue patients. Among these patients, two had a gain of 1 copy (CN = 3) and one had lost 1 copy (CN = 1), indicating that a rare CNV of the ABCF1 gene was detected among dengue patients from Peninsular Malaysia. Although the gene is suspected to regulate inflammatory responses and pathogen-induced cytokine storm, its relevance to dengue requires further investigation.
    Matched MeSH terms: DNA Copy Number Variations*
  12. Salahshourifar I, Vincent-Chong VK, Kallarakkal TG, Zain RB
    Oral Oncol, 2014 May;50(5):404-12.
    PMID: 24613650 DOI: 10.1016/j.oraloncology.2014.02.005
    Oral cancer is a multifactorial disease in which both environmental and genetic factors contribute to the aetiopathogenesis. Oral cancer is the sixth most common cancer worldwide with a higher incidence among Melanesian and South Asian countries. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC). The present study aimed to determine common genomic copy number alterations (CNAs) and their frequency by including 12 studies that have been conducted on OSCCs using array comparative genomic hybridization (aCGH). In addition, we reviewed the literature dealing with CNAs that drive oral precursor lesions to the invasive tumors. Results showed a sequential accumulation of genetic changes from oral precursor lesions to invasive tumors. With the disease progression, accumulation of genetic changes increases in terms of frequency, type and size of the abnormalities, even on different regions of the same chromosome. Gains in 3q (36.5%), 5p (23%), 7p (21%), 8q (47%), 11q (45%), 20q (31%) and losses in 3p (37%), 8p (18%), 9p (10%) and 18q (11%) were the most common observations among those studies. However, losses are less frequent than gains but it appears that they might be the primary clonal events in causing oral cancer.
    Matched MeSH terms: DNA Copy Number Variations*
  13. Ngamphiw C, Assawamakin A, Xu S, Shaw PJ, Yang JO, Ghang H, et al.
    PLoS One, 2011;6(6):e21451.
    PMID: 21731755 DOI: 10.1371/journal.pone.0021451
    The HUGO Pan-Asian SNP consortium conducted the largest survey to date of human genetic diversity among Asians by sampling 1,719 unrelated individuals among 71 populations from China, India, Indonesia, Japan, Malaysia, the Philippines, Singapore, South Korea, Taiwan, and Thailand. We have constructed a database (PanSNPdb), which contains these data and various new analyses of them. PanSNPdb is a research resource in the analysis of the population structure of Asian peoples, including linkage disequilibrium patterns, haplotype distributions, and copy number variations. Furthermore, PanSNPdb provides an interactive comparison with other SNP and CNV databases, including HapMap3, JSNP, dbSNP and DGV and thus provides a comprehensive resource of human genetic diversity. The information is accessible via a widely accepted graphical interface used in many genetic variation databases. Unrestricted access to PanSNPdb and any associated files is available at: http://www4a.biotec.or.th/PASNP.
    Matched MeSH terms: DNA Copy Number Variations/genetics
  14. Vincent-Chong VK, Salahshourifar I, Razali R, Anwar A, Zain RB
    Head Neck, 2016 04;38 Suppl 1:E783-97.
    PMID: 25914319 DOI: 10.1002/hed.24102
    BACKGROUND: This purpose of this meta-analysis study was to identify the most frequent and potentially significant copy number alteration (CNA) in oral carcinogenesis.

    METHODS: Seven oral squamous cell carcinoma (OSCC)-related publications, corresponding to 312 samples, were identified for this meta-analysis. The data were analyzed in a 4-step process that included the genome assembly coordination of multiple platforms, assignment of chromosomal position anchors, calling gains and losses, and functional annotation analysis.

    RESULTS: Gains were more frequent than losses in the entire dataset. High-frequency gains were identified in chromosomes 5p, 14q, 11q, 7p, 17q, 20q, 8q, and 3q, whereas high-frequency losses were identified in chromosomes 3p, 8p, 6p, 18q, and 4q. Ingenuity pathway analysis showed that the top biological function was associated with immortalization of the epithelial cells (p = 1.93E-04).

    CONCLUSION: This study has identified multiple recurrent CNAs that are involved in various biological annotations associated with oral carcinogenesis. © 2015 Wiley Periodicals, Inc. Head Neck 38: E783-E797, 2016.

    Matched MeSH terms: DNA Copy Number Variations*
  15. Jamaluddin J, Mohd Khair NK, Vinodamaney SD, Othman Z, Abubakar S
    BMC Genet, 2020 01 03;21(1):1.
    PMID: 31900126 DOI: 10.1186/s12863-019-0803-3
    BACKGROUND: C-C motif Chemokine Ligand 3 Like 1 (CCL3L1) is a multiallelic copy number variable, which plays a crucial role in immunoregulatory and hosts defense through the production of macrophage inflammatory protein (MIP)-1α. Variable range of the CCL3L1 copies from 0 to 14 copies have been documented in several different populations. However, there is still lack of report on the range of CCL3L1 copy number exclusively among Malaysians who are a multi-ethnic population. Thus, this study aims to extensively examine the distribution of CCL3L1 copy number in the three major populations from Malaysia namely Malay, Chinese and Indian. A diploid copy number of CCL3L1 for 393 Malaysians (Malay = 178, Indian = 90, and Chinese = 125) was quantified using Paralogue Ratio Tests (PRTs) and then validated with microsatellites analysis.

    RESULTS: To our knowledge, this is the first report on the CCL3L1 copy number that has been attempted among Malaysians and the Chinese ethnic group exhibits a diverse pattern of CCL3L1 distribution copy number from the Malay and Indian (p number among major ethnic groups in the Malaysian population is found to be significantly varied when compared to the European population (p number.

    Matched MeSH terms: DNA Copy Number Variations*
  16. Bakri NM, Ramachandran V, Kee HF, Subrayan V, Isa H, Ngah NF, et al.
    Kaohsiung J. Med. Sci., 2017 Dec;33(12):602-608.
    PMID: 29132549 DOI: 10.1016/j.kjms.2017.08.003
    Age-related macular degeneration (AMD) is the most widely recognised cause of irreversible vision loss and previous studies have suggested that the advancement of wet AMD is influenced by both modifiable and non-modifiable elements. Single nucleotide polymorphism (SNPs) and copy number of variations (CNVs) have been associated with AMD in various populations, however the results are conflicting. Our aim is to determine the CNVs of Complement Factor H-Related genes among Malaysian subjects with wet AMD. 130 patients with wet AMD and 120 healthy controls were included in this research. DNA was extracted from all subjects and CNVs of CFH, CFHR1 and CFHR3 genes; determined using quantitative real-time PCR and were compared between the two groups. A consistent association was observed between CFH gene and wet AMD susceptibility (P 
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  17. Chua EW, Cree S, Barclay ML, Doudney K, Lehnert K, Aitchison A, et al.
    Pharmacogenomics J, 2015 Oct;15(5):414-21.
    PMID: 25752523 DOI: 10.1038/tpj.2015.9
    Preferential conversion of azathioprine or 6-mercaptopurine into methylated metabolites is a major cause of thiopurine resistance. To seek potentially Mendelian causes of thiopurine hypermethylation, we recruited 12 individuals who exhibited extreme therapeutic resistance while taking azathioprine or 6-mercaptopurine and performed whole-exome sequencing (WES) and copy-number variant analysis by array-based comparative genomic hybridisation (aCGH). Exome-wide variant filtering highlighted four genes potentially associated with thiopurine metabolism (ENOSF1 and NFS1), transport (SLC17A4) or therapeutic action (RCC2). However, variants of each gene were found only in two or three patients, and it is unclear whether these genes could influence thiopurine hypermethylation. Analysis by aCGH did not identify any unusual or pathogenic copy-number variants. This suggests that if causative mutations for the hypermethylation phenotype exist they may be heterogeneous, occurring in several different genes, or they may lie within regulatory regions not captured by WES. Alternatively, hypermethylation may arise from the involvement of multiple genes with small effects. To test this hypothesis would require recruitment of large patient samples and application of genome-wide association studies.
    Matched MeSH terms: DNA Copy Number Variations
  18. Lim LS, Tay YL, Alias H, Wan KL, Dear PH
    BMC Genomics, 2012;13:389.
    PMID: 22889016 DOI: 10.1186/1471-2164-13-389
    Eimeria is a genus of parasites in the same phylum (Apicomplexa) as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite.
    Matched MeSH terms: DNA Copy Number Variations
  19. Chua KH, Lim SC, Ng CC, Lee PC, Lim YA, Lau TP, et al.
    Sci Rep, 2015;5:15671.
    PMID: 26507008 DOI: 10.1038/srep15671
    Molecular detection has overcome limitations of microscopic examination by providing greater sensitivity and specificity in Plasmodium species detection. The objective of the present study was to develop a quantitative real-time polymerase chain reaction coupled with high-resolution melting (qRT-PCR-HRM) assay for rapid, accurate and simultaneous detection of all five human Plasmodium spp. A pair of primers targeted the 18S SSU rRNA gene of the Plasmodium spp. was designed for qRT-PCR-HRM assay development. Analytical sensitivity and specificity of the assay were evaluated. Samples collected from 229 malaria suspected patients recruited from Sabah, Malaysia were screened using the assay and results were compared with data obtained using PlasmoNex(TM), a hexaplex PCR system. The qRT-PCR-HRM assay was able to detect and discriminate the five Plasmodium spp. with lowest detection limits of 1-100 copy numbers without nonspecific amplifications. The detection of Plasmodium spp. in clinical samples using this assay also achieved 100% concordance with that obtained using PlasmoNex(TM). This indicated that the diagnostic sensitivity and specificity of this assay in Plasmodium spp. detection is comparable with those of PlasmoNex(TM). The qRT-PCR-HRM assay is simple, produces results in two hours and enables high-throughput screening. Thus, it is an alternative method for rapid and accurate malaria diagnosis.
    Matched MeSH terms: DNA Copy Number Variations
  20. Chan WT, Espinosa M, Yeo CC
    Front Mol Biosci, 2016;3:9.
    PMID: 27047942 DOI: 10.3389/fmolb.2016.00009
    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
    Matched MeSH terms: DNA Copy Number Variations
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links