Displaying all 13 publications

Abstract:
Sort:
  1. Motlagh F, Ibrahim F, Menke JM, Rashid R, Seghatoleslam T, Habil H
    J Neurosci Res, 2016 Apr;94(4):297-309.
    PMID: 26748947 DOI: 10.1002/jnr.23703
    Neuroelectrophysiological properties have been used in human heroin addiction studies. These studies vary in their approach, experimental conditions, paradigms, and outcomes. However, it is essential to integrate previous findings and experimental methods for a better demonstration of current issues and challenges in designing such studies. This Review examines methodologies and experimental conditions of neuroelectrophysiological research among heroin addicts during withdrawal, abstinence, and methadone maintenance treatment and presents the findings. The results show decrements in attentional processing and dysfunctions in brain response inhibition as well as brain activity abnormalities induced by chronic heroin abuse. Chronic heroin addiction causes increased β and α2 power activity, latency of P300 and P600, and diminished P300 and P600 amplitude. Findings confirm that electroencephalography (EEG) band power and coherence are associated with craving indices and heroin abuse history. First symptoms of withdrawal can be seen in high-frequency EEG bands, and the severity of these symptoms is associated with brain functional connectivity. EEG spectral changes and event-related potential (ERP) properties have been shown to be associated with abstinence length and tend to normalize within 3-6 months of abstinence. From the conflicting criteria and confounding effects in neuroelectrophysiological studies, the authors suggest a comprehensive longitudinal study with a multimethod approach for monitoring EEG and ERP attributes of heroin addicts from early stages of withdrawal until long-term abstinence to control the confounding effects, such as nicotine abuse and other comorbid and premorbid conditions.
    Matched MeSH terms: Electrophysiology/methods*
  2. Mok SY, Lim YM, Goh SY
    J Neurosci Methods, 2009 May 15;179(2):284-91.
    PMID: 19428539 DOI: 10.1016/j.jneumeth.2009.02.009
    A device to facilitate high-density seeding of dissociated neural cells on planar multi-electrode arrays (MEAs) is presented in this paper. The device comprises a metal cover with two concentric cylinders-the outer cylinder fits tightly on to the external diameter of a MEA to hold it in place and an inner cylinder holds a central glass tube for introducing a cell suspension over the electrode area of the MEA. An O-ring is placed at the bottom of the inner cylinder and the glass tube to provide a fluid-tight seal between the glass tube and the MEA electrode surface. The volume of cell suspension in the glass tube is varied according to the desired plating density. After plating, the device can be lifted from the MEA without leaving any residue on the contact surface. The device has enabled us to increase and control the plating density of neural cell suspension with low viability, and to prepare successful primary cultures from cryopreserved neurons and glia. The cultures of cryopreserved dissociated cortical neurons that we have grown in this manner remained spontaneously active over months, exhibited stable development and similar network characteristics as reported by other researchers.
    Matched MeSH terms: Electrophysiology/instrumentation*; Electrophysiology/methods
  3. Schnakers C, Hirsch M, Noé E, Llorens R, Lejeune N, Veeramuthu V, et al.
    Brain Sci, 2020 Dec 02;10(12).
    PMID: 33276451 DOI: 10.3390/brainsci10120930
    Covert cognition in patients with disorders of consciousness represents a real diagnostic conundrum for clinicians. In this meta-analysis, our main objective was to identify clinical and demographic variables that are more likely to be associated with responding to an active paradigm. Among 2018 citations found on PubMed, 60 observational studies were found relevant. Based on the QUADAS-2, 49 studies were considered. Data from 25 publications were extracted and included in the meta-analysis. Most of these studies used electrophysiology as well as counting tasks or mental imagery. According to our statistical analysis, patients clinically diagnosed as being in a vegetative state and in a minimally conscious state minus (MCS-) show similar likelihood in responding to active paradigm and responders are most likely suffering from a traumatic brain injury. In the future, multi-centric studies should be performed in order to increase sample size, with similar methodologies and include structural and functional neuroimaging in order to identify cerebral markers related to such a challenging diagnosis.
    Matched MeSH terms: Electrophysiology
  4. El-Sabban F, Zariah A, Murgan V
    JUMMEC, 2000;5:17-23.
    The use of brain slice preparatiotis has become ilicreasiligly popular among scientists of different disciplines in recent decades for the study of the mammalian central nervous system (CNS) in general and of synaptic phenomena in particular. The in vitro hippocampal slice may be the single most used preparation, among other slices of different parts of the brain areas. The use of brain slices in different experimental work offers certain advantages over the in vivo approaches to the study of the CNS; however, such preparations may have some limitations. This review describes the hippocampal slice technique, explores some of the different types of studies in which it was employed and points out the advantages and limitations of its use. KEYWORDS: Hippocalnpal slices, brain slices, technique, synaptic function, electrophysiology, in vitvo.
    Matched MeSH terms: Electrophysiology
  5. Haque F, Reaz MBI, Ali SHM, Arsad N, Chowdhury MEH
    Sci Rep, 2020 12 10;10(1):21770.
    PMID: 33303857 DOI: 10.1038/s41598-020-78787-0
    Despite the availability of various clinical trials that used different diagnostic methods to identify diabetic sensorimotor polyneuropathy (DSPN), no reliable studies that prove the associations among diagnostic parameters from two different methods are available. Statistically significant diagnostic parameters from various methods can help determine if two different methods can be incorporated together for diagnosing DSPN. In this study, a systematic review, meta-analysis, and trial sequential analysis (TSA) were performed to determine the associations among the different parameters from the most commonly used electrophysiological screening methods in clinical research for DSPN, namely, nerve conduction study (NCS), corneal confocal microscopy (CCM), and electromyography (EMG), for different experimental groups. Electronic databases (e.g., Web of Science, PubMed, and Google Scholar) were searched systematically for articles reporting different screening tools for diabetic peripheral neuropathy. A total of 22 studies involving 2394 participants (801 patients with DSPN, 702 controls, and 891 non-DSPN patients) were reviewed systematically. Meta-analysis was performed to determine statistical significance of difference among four NCS parameters, i.e., peroneal motor nerve conduction velocity, peroneal motor nerve amplitude, sural sensory nerve conduction velocity, and sural sensory nerve amplitude (all p 
    Matched MeSH terms: Electrophysiology/methods*
  6. Mok SY, Nadasdy Z, Lim YM, Goh SY
    Neuroscience, 2012 Mar 29;206:17-24.
    PMID: 22266346 DOI: 10.1016/j.neuroscience.2012.01.009
    An ultra-slow oscillation (<0.01 Hz) in the network-wide activity of dissociated cortical networks is described in this article. This slow rhythm is characterized by the recurrence of clusters of large synchronized bursts of activity lasting approximately 1-3 min, separated by an almost equivalent interval of relatively smaller bursts. Such rhythmic activity was detected in cultures starting from the fourth week in vitro. Our analysis revealed that the propagation motifs of constituent bursts were strongly conserved across multiple oscillation cycles, and these motifs were more consistent at the electrode level compared with the neuronal level.
    Matched MeSH terms: Electrophysiology
  7. Sham EH, Prepageran N, Raman R, Quek KF
    Med J Malaysia, 2007 Dec;62(5):361-3.
    PMID: 18705465 MyJurnal
    This is a cross-sectional study design aimed to determine the prevalence of Chorda Tympani Nerve (CTN) injury and related symptoms following myringoplasty. Thirty patients were included in this study. The methods used were measuring taste thresholds using electrogustometer to map taste threshold on the anterior two-third of the tongue on the operated side with the non operated side as the control. Reading is taken when the subject experiences sour/metallic taste. All corresponding threshold values and findings were recorded and compared to control. Results showed 50% of patients had elevated threshold levels suggestive of CTN injury. However, none of the patients reported subjective taste loss. This study concludes that the prevelance rate of CTN injury in post myringoplasty patients is about 50% but this is not associated with altered taste sensation.
    Matched MeSH terms: Electrophysiology
  8. Coromilas EJ, Kochav S, Goldenthal I, Biviano A, Garan H, Goldbarg S, et al.
    Circ Arrhythm Electrophysiol, 2021 03;14(3):e009458.
    PMID: 33554620 DOI: 10.1161/CIRCEP.120.009458
    [Figure: see text].
    Matched MeSH terms: Cardiac Electrophysiology/trends
  9. Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H
    Comput Biol Med, 2018 11 01;102:234-241.
    PMID: 30253869 DOI: 10.1016/j.compbiomed.2018.09.008
    Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system caused due to the loss of dopaminergic neurons. It is classified under movement disorder as patients with PD present with tremor, rigidity, postural changes, and a decrease in spontaneous movements. Comorbidities including anxiety, depression, fatigue, and sleep disorders are observed prior to the diagnosis of PD. Gene mutations, exposure to toxic substances, and aging are considered as the causative factors of PD even though its genesis is unknown. This paper reviews PD etiologies, progression, and in particular measurable indicators of PD such as neuroimaging and electrophysiology modalities. In addition to gene therapy, neuroprotective, pharmacological, and neural transplantation treatments, researchers are actively aiming at identifying biological markers of PD with the goal of early diagnosis. Neuroimaging modalities used together with advanced machine learning techniques offer a promising path for the early detection and intervention in PD patients.
    Matched MeSH terms: Electrophysiology
  10. Cheong JKK, Yap S, Ooi ET, Ooi EH
    Comput Methods Programs Biomed, 2019 Jul;176:17-32.
    PMID: 31200904 DOI: 10.1016/j.cmpb.2019.04.028
    BACKGROUND AND OBJECTIVES: Recently, there have been calls for RFA to be implemented in the bipolar mode for cancer treatment due to the benefits it offers over the monopolar mode. These include the ability to prevent skin burns at the grounding pad and to avoid tumour track seeding. The usage of bipolar RFA in clinical practice remains uncommon however, as not many research studies have been carried out on bipolar RFA. As such, there is still uncertainty in understanding the effects of the different RF probe configurations on the treatment outcome of RFA. This paper demonstrates that the electrode lengths have a strong influence on the mechanics of bipolar RFA. The information obtained here may lead to further optimization of the system for subsequent uses in the hospitals.

    METHODS: A 2D model in the axisymmetric coordinates was developed to simulate the electro-thermophysiological responses of the tissue during a single probe bipolar RFA. Two different probe configurations were considered, namely the configuration where the active electrode is longer than the ground and the configuration where the ground electrode is longer than the active. The mathematical model was first verified with an existing experimental study found in the literature.

    RESULTS: Results from the simulations showed that heating is confined only to the region around the shorter electrode, regardless of whether the shorter electrode is the active or the ground. Consequently, thermal coagulation also occurs in the region surrounding the shorter electrode. This opened up the possibility for a better customized treatment through the development of RF probes with adjustable electrode lengths.

    CONCLUSIONS: The electrode length was found to play a significant role on the outcome of single probe bipolar RFA. In particular, the length of the shorter electrode becomes the limiting factor that influences the mechanics of single probe bipolar RFA. Results from this study can be used to further develop and optimize bipolar RFA as an effective and reliable cancer treatment technique.

    Matched MeSH terms: Electrophysiology
  11. Mohd Khialdin S, Grigg J, Rowe N, Crofts S, Wilson M, Troedson C
    PMID: 26396085 DOI: 10.1007/s10633-015-9511-0
    Phosphoglycerate kinase (PGK) deficiency is an X-linked neurometabolic genetic disorder with variable systemic manifestations. So far, only one patient with retinal anomalies has been reported, but no visual electrophysiology findings were described. We report the first description of visual electrophysiology in a child with PGK deficiency. This provides further information for the site of involvement in the eye.
    Matched MeSH terms: Electrophysiology
  12. Valli H, Ahmad S, Chadda KR, Al-Hadithi ABAK, Grace AA, Jeevaratnam K, et al.
    Mech Ageing Dev, 2017 Oct;167:30-45.
    PMID: 28919427 DOI: 10.1016/j.mad.2017.09.002
    INTRODUCTION: Ageing and several age-related chronic conditions including obesity, insulin resistance and hypertension are associated with mitochondrial dysfunction and represent independent risk factors for atrial fibrillation (AF).

    MATERIALS AND METHODS: Atrial arrhythmogenesis was investigated in Langendorff-perfused young (3-4 month) and aged (>12 month), wild type (WT) and peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β-/-) murine hearts modeling age-dependent chronic mitochondrial dysfunction during regular pacing and programmed electrical stimulation (PES).

    RESULTS AND DISCUSSION: The Pgc-1β-/- genotype was associated with a pro-arrhythmic phenotype progressing with age. Young and aged Pgc-1β-/- hearts showed compromised maximum action potential (AP) depolarization rates, (dV/dt)max, prolonged AP latencies reflecting slowed action potential (AP) conduction, similar effective refractory periods and baseline action potential durations (APD90) but shortened APD90 in APs in response to extrasystolic stimuli at short stimulation intervals. Electrical properties of APs triggering arrhythmia were similar in WT and Pgc-1β-/- hearts. Pgc-1β-/- hearts showed accelerated age-dependent fibrotic change relative to WT, with young Pgc-1β-/- hearts displaying similar fibrotic change as aged WT, and aged Pgc-1β-/- hearts the greatest fibrotic change. Mitochondrial deficits thus result in an arrhythmic substrate, through slowed AP conduction and altered repolarisation characteristics, arising from alterations in electrophysiological properties and accelerated structural change.

    Matched MeSH terms: Electrophysiology
  13. Nasir MN, Abdullah J, Habsah M, Ghani RI, Rammes G
    Phytomedicine, 2012 Feb 15;19(3-4):311-6.
    PMID: 22112723 DOI: 10.1016/j.phymed.2011.10.004
    The asiatic acid, a triterpenoids isolated from Centella asiatica was used to delineate its inhibitory effect on acetylcholinesterase (AChE) properties, excitatory post synaptic potential (EPSP) and locomotor activity. This study is consistent with asiatic acid having an effect on AChE, a selective GABA(B) receptor agonist and no sedative effect on locomotor.
    Matched MeSH terms: Electrophysiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links