MATERIALS AND METHODS: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle- related transcripts was analysed based on a previous microarray dataset.
RESULTS: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of ERα protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied.
CONCLUSIONS: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.
CONCLUSION: Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.
METHODS: Uteri from ovariectomized, female Sprague-Dawley rats receiving seven days estradiol, progesterone or genistein (25, 50 and 100mg/kg/day) were harvested and levels of AQP-1, 2, 5 and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR (qPCR) respectively. Distribution of these proteins in uterus was observed by immunohistochemistry.
RESULTS: Genistein caused a dose-dependent increase in uterine AQP-1, 2, 5 and 7 protein and mRNA expression, however at the levels lower than following estradiol or progesterone stimulations. Effects of genistein were antagonized by estradiol receptor blocker, ICI 182780. Estradiol caused the highest AQP-2 protein and mRNA expression while progesterone caused the highest AQP-1, 5 and 7 protein and mRNA expression in uterus. AQP-1, 2, 5 and 7 protein were found to be distributed in the myometrium as well as in uterine luminal and glandular epithelia and endometrial blood vessels. In conclusion, the observed effects of estradiol, progesterone and genistein on uterine AQP-1, 2, 5 and 7 expression could help to explain the differences in the amount of fluid accumulated in the uterus under these different conditions.