Displaying all 5 publications

Abstract:
Sort:
  1. Lau TV, Puah SM, Tan JMA, Merino S, Puthucheary SD, Chua KH
    Microb Pathog, 2023 Apr;177:106059.
    PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059
    Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p flagella-mediated motility and surface attachment. Our study shows the role of flagella in A. dhakensis biofilm formation warrants further investigations.
    Matched MeSH terms: Flagella/genetics
  2. Lau TV, Puah SM, Tan JMA, Puthucheary SD, Chua KH
    Braz J Microbiol, 2021 Jun;52(2):517-529.
    PMID: 33768508 DOI: 10.1007/s42770-021-00457-8
    Flagellar-mediated motility is a crucial virulence factor in many bacterial species. A dual flagellar system has been described in aeromonads; however, there is no flagella-related study in the emergent human pathogen Aeromonas dhakensis. Using 46 clinical A. dhakensis, phenotypic motility, genotypic characteristics (flagellar genes and sequence types), biochemical properties and their relationship were investigated in this study. All 46 strains showed swimming motility at 30 °C in 0.3% Bacto agar and carried the most prevalent 6 polar flagellar genes cheA, flgE, flgG, flgH, flgL, and flgN. On the contrary, only 18 strains (39%) demonstrated swarming motility on 0.5% Eiken agar at 30 °C and they harbored 11 lateral flagellar genes lafB, lafK, lafS, lafT, lafU, flgCL, flgGL, flgNL, fliEL, fliFL, and fliGL. No association was found between biochemical properties and motility phenotypes. Interestingly, a significant association between swarming and strains isolated from pus was observed (p = 0.0171). Three strains 187, 277, and 289 isolated from pus belonged to novel sequence types (ST522 and ST524) exhibited fast swimming and swarming profiles, and they harbored > 90% of the flagellar genes tested. Our findings provide a fundamental understanding of flagellar-mediated motility in A. dhakensis.
    Matched MeSH terms: Flagella/genetics*
  3. Lim BK, Thong KL
    J Infect Dev Ctries, 2009 Jul 01;3(6):420-8.
    PMID: 19762954
    BACKGROUND: Differentiation of Salmonella enterica into its serogroups is important for epidemiological study. The objective of the study was to apply a multiplex PCR targeting serogroups A, B, C1, D, E and Vi-positive strains of Salmonella enterica commonly found in Malaysia. A separate H-typing multiplex PCR which identified flagellar antigen "a", "b" or "d" was also optimized to confirm clinical serotypes, S. Paratyphi A and S. Typhi.

    METHODOLOGY: Sixty-seven laboratory Salmonella enterica strains were tested. Six sets of primers targeting defined regions of the O antigen synthesis genes (rfb gene cluster) and Vi antigen gene (viaB) were selected and combined into a multiplex PCR for O-grouping. Four primers (H-for, Ha-rev, Hb-rev and Hd-rev) were used in the second step multiplex PCR for H-typing. The optimized mPCR assays were further evaluated with 58 blind-coded Salmonella strains.

    RESULTS: The multiplex PCR results obtained showed 100% concordance to the conventionally typed serogroups. Validation with 58 blind coded Salmonella strains yield 100% accuracy and specificity.

    CONCLUSION: Based on this study, PCR serogrouping proved to be a rapid, alternative method for further differentiation of Salmonella enterica.

    Matched MeSH terms: Flagella/genetics
  4. Goulter RM, Taran E, Gentle IR, Gobius KS, Dykes GA
    Colloids Surf B Biointerfaces, 2014 Jul 1;119:90-8.
    PMID: 24880987 DOI: 10.1016/j.colsurfb.2014.04.003
    The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens.
    Matched MeSH terms: Flagella/genetics
  5. Yahya MFZR, Alias Z, Karsani SA
    Protein J, 2017 08;36(4):286-298.
    PMID: 28470375 DOI: 10.1007/s10930-017-9719-9
    Salmonella typhimurium is an important biofilm-forming bacteria. It is known to be resistant to a wide range of antimicrobials. The present study was carried out to evaluate the effects of dimethyl sulfoxide (DMSO) against S. typhimurium biofilm and investigate whole-cell protein expression by biofilm cells following treatment with DMSO. Antibiofilm activities were assessed using pellicle assay, crystal violet assay, colony-forming unit counting and extracellular polymeric substance (EPS) matrix assay whilst differential protein expression was investigated using a combination of one dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, tandem mass spectrometry and bioinformatics. Treatment with 32% DMSO inhibited pellicle formation, biofilm viability, biofilm biomass and several important components of EPS matrix. Subtractive protein profiling identified two unique protein bands (25.4 and 51.2 kDa) which were present only in control biofilm and not in 32% DMSO-treated biofilm. In turn, 29 and 46 proteins were successfully identified from the protein bands of 25.4 and 51.2 kDa respectively. Protein interaction network analysis identified several biological pathways to be affected, including glycolysis, PhoP-PhoQ phosphorelay signalling and flagellar biosynthesis. The present study suggests that DMSO may inhibit multiple biological pathways to control biofilm formation.
    Matched MeSH terms: Flagella/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links