Displaying all 14 publications

Abstract:
Sort:
  1. Zhang H, Rios RS, Boursier J, Anty R, Chan WK, George J, et al.
    Chin Med J (Engl), 2023 Feb 05;136(3):341-350.
    PMID: 36848175 DOI: 10.1097/CM9.0000000000002603
    BACKGROUND: Liver biopsy for the diagnosis of non-alcoholic steatohepatitis (NASH) is limited by its inherent invasiveness and possible sampling errors. Some studies have shown that cytokeratin-18 (CK-18) concentrations may be useful in diagnosing NASH, but results across studies have been inconsistent. We aimed to identify the utility of CK-18 M30 concentrations as an alternative to liver biopsy for non-invasive identification of NASH.

    METHODS: Individual data were collected from 14 registry centers on patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD), and in all patients, circulating CK-18 M30 levels were measured. Individuals with a NAFLD activity score (NAS) ≥5 with a score of ≥1 for each of steatosis, ballooning, and lobular inflammation were diagnosed as having definite NASH; individuals with a NAS ≤2 and no fibrosis were diagnosed as having non-alcoholic fatty liver (NAFL).

    RESULTS: A total of 2571 participants were screened, and 1008 (153 with NAFL and 855 with NASH) were finally enrolled. Median CK-18 M30 levels were higher in patients with NASH than in those with NAFL (mean difference 177 U/L; standardized mean difference [SMD]: 0.87 [0.69-1.04]). There was an interaction between CK-18 M30 levels and serum alanine aminotransferase, body mass index (BMI), and hypertension ( P  

    Matched MeSH terms: Hepatocytes/pathology
  2. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, et al.
    J Hepatol, 2017 05;66(5):1022-1030.
    PMID: 28039099 DOI: 10.1016/j.jhep.2016.12.022
    BACKGROUND & AIMS: The prevalence of fatty liver underscores the need for non-invasive characterization of steatosis, such as the ultrasound based controlled attenuation parameter (CAP). Despite good diagnostic accuracy, clinical use of CAP is limited due to uncertainty regarding optimal cut-offs and the influence of covariates. We therefore conducted an individual patient data meta-analysis.

    METHODS: A review of the literature identified studies containing histology verified CAP data (M probe, vibration controlled transient elastography with FibroScan®) for grading of steatosis (S0-S3). Receiver operating characteristic analysis after correcting for center effects was used as well as mixed models to test the impact of covariates on CAP. The primary outcome was establishing CAP cut-offs for distinguishing steatosis grades.

    RESULTS: Data from 19/21 eligible papers were provided, comprising 3830/3968 (97%) of patients. Considering data overlap and exclusion criteria, 2735 patients were included in the final analysis (37% hepatitis B, 36% hepatitis C, 20% NAFLD/NASH, 7% other). Steatosis distribution was 51%/27%/16%/6% for S0/S1/S2/S3. CAP values in dB/m (95% CI) were influenced by several covariates with an estimated shift of 10 (4.5-17) for NAFLD/NASH patients, 10 (3.5-16) for diabetics and 4.4 (3.8-5.0) per BMI unit. Areas under the curves were 0.823 (0.809-0.837) and 0.865 (0.850-0.880) respectively. Optimal cut-offs were 248 (237-261) and 268 (257-284) for those above S0 and S1 respectively.

    CONCLUSIONS: CAP provides a standardized non-invasive measure of hepatic steatosis. Prevalence, etiology, diabetes, and BMI deserve consideration when interpreting CAP. Longitudinal data are needed to demonstrate how CAP relates to clinical outcomes.

    LAY SUMMARY: There is an increase in fatty liver for patients with chronic liver disease, linked to the epidemic of the obesity. Invasive liver biopsies are considered the best means of diagnosing fatty liver. The ultrasound based controlled attenuation parameter (CAP) can be used instead, but factors such as the underlying disease, BMI and diabetes must be taken into account. Registration: Prospero CRD42015027238.

    Matched MeSH terms: Hepatocytes/pathology
  3. Hu L, Yu W, Li Y, Prasad N, Tang Z
    Biomed Res Int, 2014;2014:341291.
    PMID: 24719856 DOI: 10.1155/2014/341291
    The antioxidant activities and protective effects of total phenolic extracts (TPE) and their major components from okra seeds on oxidative stress induced by carbon tetrachloride (CCl4) in rat hepatocyte cell line were investigated. The major phenolic compounds were identified as quercetin 3-O-glucosyl (1 → 6) glucoside (QDG) and quercetin 3-O-glucoside (QG). TPE, QG, and QDG from okra seeds exhibited excellent reducing power and free radical scavenging capabilities including α, α-diphenyl-β-picrylhydrazyl (DPPH), superoxide anions, and hydroxyl radical. Overall, DPPH radical scavenging activity and reducing power of QG and QDG were higher than those of TPE while superoxide and hydroxyl radical scavenging activities of QG and TPE were higher than those of QDG. Furthermore, TPE, QG, and QDG pretreatments significantly alleviated the cytotoxicity of CCl4 on rat hepatocytes, with attenuated lipid peroxidation, increased SOD and CAT activities, and decreased GPT and GOT activities. The protective effects of TPE and QG on rat hepatocytes were stronger than those of QDG. However, the cytotoxicity of CCl4 on rat hepatocytes was not affected by TPE, QG, and QDG posttreatments. It was suggested that the protective effects of TPE, QG, and QDG on rat hepatocyte against oxidative stress were related to the direct antioxidant capabilities and the induced antioxidant enzymes activities.
    Matched MeSH terms: Hepatocytes/pathology
  4. Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, et al.
    PLoS One, 2015;10(10):e0139831.
    PMID: 26473485 DOI: 10.1371/journal.pone.0139831
    BACKGROUND: Ipomoea aquatica (Convolvulaceae), an aquatic edible plant, is traditionally used against heavy metal toxicity in India. The current study intended to explore the protective role of edible (aqueous) extract of I. aquatica (AEIA) against experimentally induced Pb-intoxication.

    METHODS: The cytoprotective role of AEIA was measured on mouse hepatocytes by cell viability assay followed by Hoechst staining and flow cytometric assay. The effect on ROS production, lipid peroxidation, protein carbonylation, intracellular redox status were measured after incubating the hepatocytes with Pb-acetate (6.8 μM) along with AEIA (400 μg/ml). The effects on the expressions of apoptotic signal proteins were estimated by western blotting. The protective role of AEIA was measured by in vivo assay in mice. Haematological, serum biochemical, tissue redox status, Pb bioaccumulation and histological parameters were evaluated to estimate the protective role of AEIA (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication.

    RESULTS: Pb-acetate treated hepatocytes showed a gradual reduction of cell viability dose-dependently with an IC50 value of 6.8 μM. Pb-acetate treated hepatocytes exhibited significantly enhanced levels (p < 0.01) of ROS production, lipid peroxidation, protein carbonylation with concomitant depletion (p < 0.01) of antioxidant enzymes and GSH. However, AEIA treatment could significantly restore the aforementioned parameters in murine hepatocytes near to normalcy. Besides, AEIA significantly reversed (p < 0.05-0.01) the alterations of transcription levels of apoptotic proteins viz. Bcl 2, Bad, Cyt C, Apaf-1, cleaved caspases [caspase 3, caspase 8 and caspase 9], Fas and Bid. In in vivo bioassay, Pb-acetate treatment caused significantly high intracellular Pb burden and oxidative pressure in the kidney, liver, heart, brain and testes in mice. In addition, the haematological and serum biochemical factors were changed significantly in Pb-acetate-treated animals. AEIA treatment restored significantly the evaluated-parameters to the near-normal position.

    CONCLUSION: The extract may offer the protective effect via counteracting with Pb mediated oxidative stress and/or promoting the elimination of Pb by chelating. The presence of substantial quantities of flavonoids, phenolics and saponins would be responsible for the overall protective effect.

    Matched MeSH terms: Hepatocytes/pathology
  5. Kamisan FH, Yahya F, Mamat SS, Kamarolzaman MF, Mohtarrudin N, Kek TL, et al.
    PMID: 24708543 DOI: 10.1186/1472-6882-14-123
    Dicranopteris linearis (family Gleicheniaceae) has been reported to possess anti-inflammatory and antioxidant activities but no attempt has been made to study its hepatoprotective potential. The aim of the present study was to determine the hepatoprotective effect of methanol extracts of D. linearis (MEDL) against carbon tetrachloride (CCl4)-induced acute liver injury in rats.
    Matched MeSH terms: Hepatocytes/pathology
  6. Shiran MS, Isa MR, Mohd Sidik S, Rampal L, Hairuszah I, Sabariah AR
    Malays J Pathol, 2006 Dec;28(2):87-92.
    PMID: 18376797 MyJurnal
    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and its diagnosis on routine stains is usually straightforward, except in some cases where there may be difficulty in distinguishing HCCs from metastatic carcinomas (MC) and cholangiocarcinomas (CC). Hepatocyte Paraffin 1 antibody (Hep Par 1) is a new monoclonal antibody which reacts with normal and neoplastic hepatocytes, and this study aims to determine its specificity and sensitivity in distinguishing hepatocellular carcinoma (HCC) from cholangiocarcinoma (CC) and metastatic carcinomas (MC). Hep Par 1 antibody was applied to 28 cases of HCC, 22 cases of MC from varying sites and 8 CCs, and produced a strong, diffuse, granular, cytoplasmic staining of all benign hepatocytes. 23 out of 28 cases of HCC showed heterogeneously positive staining for Hep Par 1 irrespective of their degree of differentiation, while 2 out of 8 cases of cholangiocarcinoma were positive for Hep Par 1, and all 22 cases of metastatic carcinoma were negative. The sensitivity and specificity of Hep Par 1 for HCC was 82.1% and 93.3% respectively; whereby the antibody was noted to show occasional false positivity in cases of cholangiocarcinoma and non-neoplastic bowel mucosa, while its variable staining in HCC produced false negative results in some small biopsies. Thus, Hep Par 1 should be used in a panel with other antibodies to obtain useful information in distinguishing HCC from CC and MC.
    Matched MeSH terms: Hepatocytes/pathology
  7. Thio CL, Yusof R, Ashrafzadeh A, Bahari S, Abdul-Rahman PS, Karsani SA
    PLoS One, 2015;10(6):e0129033.
    PMID: 26083627 DOI: 10.1371/journal.pone.0129033
    The Chikungunya virus (CHIKV) is an arthropod borne virus. In the last 50 years, it has been the cause of numerous outbreaks in tropical and temperate regions, worldwide. There is limited understanding regarding the underlying molecular mechanisms involved in CHIKV replication and how the virus interacts with its host. In the present study, comparative proteomics was used to identify secreted host proteins that changed in abundance in response to early CHIKV infection. Two-dimensional gel electrophoresis was used to analyse and compare the secretome profiles of WRL-68 cells infected with CHIKV against mock control WRL-68 cells. The analysis identified 25 regulated proteins in CHIKV infected cells. STRING network analysis was then used to predict biological processes that may be affected by these proteins. The processes predicted to be affected include signal transduction, cellular component and extracellular matrix (ECM) organization, regulation of cytokine stimulus and immune response. These results provide an initial view of CHIKV may affect the secretome of infected cells during early infection. The results presented here will compliment earlier results from the study of late host response. However, functional characterization will be necessary to further enhance our understanding of the roles played by these proteins in the early stages of CHIKV infection in humans.
    Matched MeSH terms: Hepatocytes/pathology
  8. Somchit N, Hassim SM, Samsudin SH
    Hum Exp Toxicol, 2002 Jan;21(1):43-8.
    PMID: 12046723
    This current study was to investigate the in vitro cytotoxicity of rat hepatocytes induced by the antifungal drugs, itraconazole and fluconazole. Both antifungal drugs caused dose-dependent cytotoxicity. In vitro incubation of hepatocytes with itraconazole revealed significantly higher lactate dehydrogenase (LDH) leakage when compared to fluconazole. Phenobarbital pretreated hepatocytes contained significantly higher total cytochrome P450 content than the control hepatocytes. P450 content was reduced approximately 30% for both types of hepatocytes after 6 hours incubation. Interestingly, cytotoxicity of itraconazole was reduced significantly by phenobarbital pretreatment. Phenobarbital did not have any effect on the cytotoxicity induced by fluconazole. These results demonstrate the in vitro toxicity of hepatocytes induced by itraconazole and fluconazole that were expressed in a dose- and time-dependent manner. Phenobarbital plays a role in the cytoprotection of hepatocytes to itraconazole-induced but not fluconazole-induced cytotoxicity in vitro.
    Matched MeSH terms: Hepatocytes/pathology
  9. Isa NM, Bong JJ, Ghani FA, Rose IM, Husain S, Azrif M
    Diagn Cytopathol, 2012 Nov;40(11):1010-4.
    PMID: 21563319 DOI: 10.1002/dc.21706
    Cutaneous metastasis of hepatocellular carcinoma (HCC) is very rare, accounting for less than 0.8% of all known cutaneous metastases and occurring in 2.7-3.4% of HCCs. With less than 50 such cases reported worldwide, most of which were diagnosed histologically on excised lesions, it can only be expected that diagnosis made on cytological features alone would be challenging. We report a case of cutaneous metastasis of HCC diagnosed based on cytological features and confirmed by Hep Par 1 immunopositivity of the cell block material. An 81-year-old man, who was known to have unresectable HCC, presented with a 1-month history of painless, left nasal alae mass. The mass measured 1.5 cm in diameter, and was multilobulated with a central necrosis. Fine needle aspiration of the mass was done. Smears were cellular, comprising of malignant cells in loose clusters and aggregates as well as singly dispersed. The malignant cells displayed moderate nuclear pleomorphism, occasional prominent nucleoli, and intranuclear pseudoinclusion. Cell block material demonstrated the trabeculae pattern of the malignant cells and Hep Par 1 immunopositivity. The final diagnosis of a metastatic cutaneous HCC was made. In conclusion, cutaneous HCC metastasis is rare and should be considered in the differential diagnosis in patients with a history of HCC presenting with suspicious skin lesion. In the right clinical setting, a confident diagnosis can be made in such cases by using the fine needle aspiration technique aided with immunopositivity for Hep Par 1 antibody of the aspirated material.
    Matched MeSH terms: Hepatocytes/pathology
  10. Lai LL, Chan WK, Sthaneshwar P, Nik Mustapha NR, Goh KL, Mahadeva S
    PLoS One, 2017;12(4):e0174982.
    PMID: 28369100 DOI: 10.1371/journal.pone.0174982
    Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+-M2BP) has been suggested to be useful for the assessment of disease severity in non-alcoholic fatty liver disease (NAFLD). Consecutive adult NAFLD patients who had a liver biopsy were included. Serum WFA+-M2BP level was measured using a lectin-antibody sandwich immunoassay using a chemiluminescence enzyme immunoassay machine (HISCL-5000, Sysmex, Kobe, Japan). The measured levels were indexed using the following equation: Cut-off index (COI) = ([WFA+-M2BP]sample-[WFA+-M2BP]NC) / ([WFA+-M2BP]PC-[WFA+-M2BP]NC), where PC = positive control and NC = negative control. Histopathological examination of liver biopsy specimen was reported according to Non-Alcoholic Steatohepatitis (NASH) Clinical Research Network Scoring System. Data for 220 cases were analyzed. The AUROC of the COI for the diagnosis of NASH was 0.65. The AUROC of the COI for the diagnosis of steatosis grade ≥2 and 3 was 0.64 and 0.53, respectively. The AUROC of the COI for the diagnosis of lobular inflammation grade ≥1, ≥2 and 3 was 0.57, 0.68 and 0.59, respectively. The AUROC of the COI for the diagnosis of hepatocyte ballooning grade ≥1 and 2 was 0.64 and 0.65, respectively. The AUROC of the COI for the diagnosis of fibrosis stage ≥1, ≥2, ≥3 and 4 was 0.61, 0.71, 0.74 and 0.84, respectively. Out of the 220 cases, 152 cases were the same 76 patients who had a repeat liver biopsy after 48 weeks of intervention. The AUROC of the change in the COI to detect improvement in steatosis, lobular inflammation, hepatocyte ballooning and fibrosis was 0.57, 0.54, 0.59 and 0.52, respectively. In conclusion, serum WFA+-M2BP was most useful for the diagnosis of significant fibrosis, advanced fibrosis and cirrhosis in NAFLD patients. However, it was less useful for differentiating NASH from non-NASH, and for diagnosis and follow-up of the individual histopathological components of NASH.
    Matched MeSH terms: Hepatocytes/pathology
  11. Uthaya Kumar US, Chen Y, Kanwar JR, Sasidharan S
    Oxid Med Cell Longev, 2016;2016:6841348.
    PMID: 28053693 DOI: 10.1155/2016/6841348
    The therapeutic potential of Cassia surattensis in reducing free radical-induced oxidative stress and inflammation particularly in hepatic diseases was evaluated in this study. The polyphenol rich C. surattensis seed extract showed good in vitro antioxidant. C. surattensis seed extract contained total phenolic content of 100.99 mg GAE/g dry weight and there was a positive correlation (r > 0.9) between total phenolic content and the antioxidant activities of the seed extract. C. surattensis seed extract significantly (p < 0.05) reduced the elevated levels of serum liver enzymes (ALT, AST, and ALP) and relative liver weight in paracetamol-induced liver hepatotoxicity in mice. Moreover, the extract significantly (p < 0.05) enhanced the antioxidant enzymes and glutathione (GSH) contents in the liver tissues, which led to decrease of malondialdehyde (MDA) level. The histopathological examination showed the liver protective effect of C. surattensis seed extract against paracetamol-induced histoarchitectural alterations by maximum recovery in the histoarchitecture of the liver tissue. Furthermore, histopathological observations correspondingly supported the biochemical assay outcome, that is, the significant reduction in elevated levels of serum liver enzymes. In conclusion, C. surattensis seed extract enhanced the in vivo antioxidant status and showed antihepatotoxic activities, which is probably due to the presence of phenolic compounds.
    Matched MeSH terms: Hepatocytes/pathology
  12. Nna VU, Bakar ABA, Mohamed M
    Life Sci, 2018 Oct 15;211:40-50.
    PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018
    AIMS: Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects.

    MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle.

    KEY FINDINGS: Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats.

    SIGNIFICANCE: Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.

    Matched MeSH terms: Hepatocytes/pathology
  13. Somchit N, Norshahida AR, Hasiah AH, Zuraini A, Sulaiman MR, Noordin MM
    Hum Exp Toxicol, 2004 Nov;23(11):519-25.
    PMID: 15625777
    Itraconazole and fluconazole are oral antifungal drugs, which have a wide spectrum antifungal activity and better efficacy than the older drugs. However, both drugs have been associated with hepatotoxicity in susceptible patients. The mechanism of antifungal drug-induced hepatotoxicity is largely unknown. Therefore, the aim of this present study was to investigate and compare the hepatotoxicity induced by these drugs in vivo. Rats were treated intraperitoneally with itraconazole or fluconazole either single (0, 10, 100 and 200 mg/kg) or subchronic (0, 10, 50 and 100 mg/kg per day for 14 days) doses. Plasma and liver samples were taken at the end of the study. A statistically significant and dose dependent increase of plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities were detected in the subchronic itraconazole-treated group. In addition, dose-dependent hepatocellular necrosis, degeneration of periacinar and mizonal hepatocytes, bile duct hyperplasia and biliary cirrhosis and giant cell granuloma were observed histologically in the same group. Interestingly, fluconazole treated rats had no significant increase in transaminases for both single and subchronic groups. In the subchronic fluconazole treated rats, only mild degenerative changes of centrilobular hepatocytes were observed. These results demonstrated that itraconazole was a more potent hepatotoxicant than fluconazole in vivo in rats.
    Matched MeSH terms: Hepatocytes/pathology
  14. Chew GS, Myers S, Shu-Chien AC, Muhammad TS
    Mol Cell Biochem, 2014 Mar;388(1-2):25-37.
    PMID: 24242046 DOI: 10.1007/s11010-013-1896-z
    Interleukin-6 (IL-6) is the major activator of the acute phase response (APR). One important regulator of IL-6-activated APR is peroxisome proliferator-activated receptor alpha (PPARα). Currently, there is a growing interest in determining the role of PPARα in regulating APR; however, studies on the molecular mechanisms and signaling pathways implicated in mediating the effects of IL-6 on the expression of PPARα are limited. We previously revealed that IL-6 inhibits PPARα gene expression through CAAT/enhancer-binding protein transcription factors in hepatocytes. In this study, we determined that STAT1/3 was the direct downstream molecules that mediated the Janus kinase 2 (JAK2) and phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathways in IL-6-induced repression of PPARα. Treatment of cells with pharmacological inhibitors of JAK2, PI3K, AKT, and mTOR attenuated the inhibitory effect of IL-6 on PPARα protein in a dose-dependent manner. These inhibitors also decreased the IL-6-induced repression of PPARα mRNA expression and promoter activity. Overexpression of STAT1 and STAT3 in HepG2 cells cotransfected with a reporter vector containing this PPARα promoter region revealed that both the expression plasmids inhibited the IL-6-induced repression of PPARα promoter activity. In the presence of inhibitors of JAK2 and mTOR (AG490 and rapamycin, respectively), IL-6-regulated protein expression and DNA binding of STAT1 and STAT3 were either completely or partially inhibited simultaneously, and the IL-6-induced repression of PPARα protein and mRNA was also inhibited. This study has unraveled novel pathways by which IL-6 inhibits PPARα gene transcription, involving the modulation of JAK2/STAT1-3 and PI3K/AKT/mTOR by inducing the binding of STAT1 and STAT3 to STAT-binding sites on the PPARα promoter. Together, these findings represent a new model of IL-6-induced suppression of PPARα expression by inducing STAT1 and STAT3 phosphorylation and subsequent down-regulation of PPARα mRNA expression.
    Matched MeSH terms: Hepatocytes/pathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links