Displaying all 14 publications

Abstract:
Sort:
  1. Yaacob JS, Loh HS, Mat Taha R
    ScientificWorldJournal, 2013;2013:613635.
    PMID: 23844406 DOI: 10.1155/2013/613635
    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants.
    Matched MeSH terms: Histone Deacetylases/metabolism*
  2. Singh A, Patel P, Patel VK, Jain DK, Veerasamy R, Sharma PC, et al.
    Curr Cancer Drug Targets, 2017;17(5):456-466.
    PMID: 28067178 DOI: 10.2174/1568009617666170109150134
    BACKGROUND: Colorectal cancer is a devastating disease with a dismal prognosis which is heavily hampered by delayed diagnosis. Surgical resection, radiation therapy and chemotherapy are the curative options. Due to few therapeutic treatments available i.e., mono and combination therapy and development of resistance towards drug response, novel and efficacious therapy are urgently needed.

    OBJECTIVE: In this study, we have studied the potential of histone deacetylase inhibitors in colorectal cancer.

    RESULTS: Histone deacetylase inhibitors (HDACIs) are an emerging class of therapeutic agents having potential anticancer activity with minimal toxicity for different types of malignancies in preclinical studies. HDACIs have proven less effective in monotherapy thus the combination of HDACIs with other anticancer agents are being assessed for the treatment of colorectal cancer.

    CONCLUSION: The molecular mechanism emphasizing the anticancer effect of HDACIs in colorectal cancer was illustrated and a recapitulation was carried out on the recent advances in the rationale behind combination therapies currently underway in clinical evaluations.

    Matched MeSH terms: Histone Deacetylases/metabolism
  3. Kaur M, Blair J, Devkota B, Fortunato S, Clark D, Lawrence A, et al.
    Am J Med Genet A, 2023 Aug;191(8):2113-2131.
    PMID: 37377026 DOI: 10.1002/ajmg.a.63247
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.
    Matched MeSH terms: Histone Deacetylases/genetics
  4. El Omari N, Lee LH, Bakrim S, Makeen HA, Alhazmi HA, Mohan S, et al.
    Biomed Pharmacother, 2023 Aug;164:114774.
    PMID: 37224749 DOI: 10.1016/j.biopha.2023.114774
    Romidepsin, also known as NSC630176, FR901228, FK-228, FR-901228, depsipeptide, or Istodax®, is a natural molecule produced by the Chromobacterium violaceum bacterium that has been approved for its anti-cancer effect. This compound is a selective histone deacetylase (HDAC) inhibitor, which modifies histones and epigenetic pathways. An imbalance between HDAC and histone acetyltransferase can lead to the down-regulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by romidepsin indirectly contributes to the anticancer therapeutic effect by causing the accumulation of acetylated histones, restoring normal gene expression in cancer cells, and promoting alternative pathways, including the immune response, p53/p21 signaling cascades, cleaved caspases, poly (ADP-ribose) polymerase (PARP), and other events. Secondary pathways mediate the therapeutic action of romidepsin by disrupting the endoplasmic reticulum and proteasome and/or aggresome, arresting the cell cycle, inducing intrinsic and extrinsic apoptosis, inhibiting angiogenesis, and modifying the tumor microenvironment. This review aimed to highlight the specific molecular mechanisms responsible for HDAC inhibition by romidepsin. A more detailed understanding of these mechanisms can significantly improve the understanding of cancer cell disorders and pave the way for new therapeutic approaches using targeted therapy.
    Matched MeSH terms: Histone Deacetylases/metabolism
  5. El Omari N, Bakrim S, Khalid A, Albratty M, Abdalla AN, Lee LH, et al.
    Biomed Pharmacother, 2023 Sep;165:115212.
    PMID: 37541175 DOI: 10.1016/j.biopha.2023.115212
    Cancer progression is strongly affected by epigenetic events in addition to genetic modifications. One of the key elements in the epigenetic control of gene expression is histone modification through acetylation, which is regulated by the synergy between histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are thought to offer considerable potential for the development of anticancer medications, particularly when used in conjunction with other anticancer medications and/or radiotherapy. Belinostat (Beleodaq, PXD101) is a pan-HDAC unsaturated hydroxamate inhibitor with a sulfonamide group that has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of refractory or relapsed peripheral T-cell lymphoma (PTCL) and solid malignancies or and other hematological tissues. This drug modifies histones and epigenetic pathways. Because HDAC and HAT imbalance can lead to downregulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by belinostat indirectly promotes anti-cancer therapeutic effect by provoking acetylated histone accumulation, re-establishing normal gene expressions in cancer cells and stimulating other routes such as the immune response, p27 signaling cascades, caspase 3 activation, nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) degradation, cyclin A (G2/M phase), cyclin E1 (G1/S phase) and other events. In addition, belinostat has already been discovered to increase p21WAF1 in a number of cell lines (melanoma, prostate, breast, lung, colon, and ovary). This cyclin-dependent kinase inhibitor actually has a role in processes that cause cell cycle arrest and apoptosis. Belinostat's clinical effectiveness, comprising Phase I and II studies within the areas of solid and hematological cancers, has been evidenced through several investigative trials that have supported its potential to be a valuable anti-cancer drug. The purpose of this research was to provide insight on the specific molecular processes through which belinostat inhibits HDAC. The ability to investigate new therapeutic options employing targeted therapy and acquire a deeper understanding of cancer cell abnormalities may result from a better understanding of these particular routes.
    Matched MeSH terms: Histone Deacetylases/metabolism
  6. Ngai SC, Rosli R, Al Abbar A, Abdullah S
    Biomed Res Int, 2015;2015:346134.
    PMID: 25961011 DOI: 10.1155/2015/346134
    Stable introduction of a functional gene in hematopoietic progenitor cells (HPCs) has appeared to be an alternative approach to correct genetically linked blood diseases. However, it is still unclear whether lentiviral vector (LV) is subjected to gene silencing in HPCs. Here, we show that LV carrying green fluorescent protein (GFP) reporter gene driven by cytomegalovirus (CMV) promoter was subjected to transgene silencing after transduction into HPCs. This phenomenon was not due to the deletion of proviral copy number. Study using DNA demethylating agent and histone deacetylase (HDAC) inhibitor showed that the drugs could either prevent or reverse the silencing effect. Using sodium bisulfite sequencing and chromatin immunoprecipitation (ChIP) assay, we demonstrated that DNA methylation occurred soon after LV transduction. At the highest level of gene expression, CMV promoter was acetylated and was in a euchromatin state, while GFP reporter gene was acetylated but was strangely in a heterochromatin state. When the expression declined, CMV promoter underwent transition from acetylated and euchromatic state to a heterochromatic state, while the GFP reporter gene was in deacetylated and heterochromatic state. With these, we verify that DNA methylation and dynamic histone modifications lead to transgene silencing in HPCs transduced with LV.
    Matched MeSH terms: Histone Deacetylases/biosynthesis*; Histone Deacetylases/genetics
  7. Gallagher D, Voronova A, Zander MA, Cancino GI, Bramall A, Krause MP, et al.
    Dev. Cell, 2015 Jan 12;32(1):31-42.
    PMID: 25556659 DOI: 10.1016/j.devcel.2014.11.031
    Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, and aberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation in the Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD.
    Matched MeSH terms: Histone Deacetylases/genetics; Histone Deacetylases/metabolism*; Histone Deacetylases/chemistry
  8. Mohseni J, Zabidi-Hussin ZA, Sasongko TH
    Genet Mol Biol, 2013 Sep;36(3):299-307.
    PMID: 24130434 DOI: 10.1590/S1415-47572013000300001
    Histone acetylation plays an important role in regulation of transcription in eukaryotic cells by promoting a more relaxed chromatin structure necessary for transcriptional activation. Histone deacetylases (HDACs) remove acetyl groups and suppress gene expression. HDAC inhibitors (HDACIs) are a group of small molecules that promote gene transcription by chromatin remodeling and have been extensively studied as potential drugs for treating of spinal muscular atrophy. Various drugs in this class have been studied with regard to their efficacy in increasing the expression of survival of motor neuron (SMN) protein. In this review, we discuss the current literature on this topic and summarize the findings of the main studies in this field.
    Matched MeSH terms: Histone Deacetylases
  9. Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC
    Curr Cancer Drug Targets, 2019;19(2):82-100.
    PMID: 29714144 DOI: 10.2174/1568009618666180430130248
    Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
    Matched MeSH terms: Histone Deacetylases
  10. Hoque MA, Islam MS, Islam MN, Kato T, Nishino N, Ito A, et al.
    Amino Acids, 2014 Oct;46(10):2435-44.
    PMID: 25048030 DOI: 10.1007/s00726-014-1800-5
    Inhibitors of histone deacetylases (HDACs) are a promising class of anticancer agents that have an effect on gene regulation. The naturally occurring cyclic depsipeptide FK228 containing disulfide and Largazole possessing thioester functionalities act as pro-drugs and share the same HDAC inhibition mechanism in cell. Inspired from these facts, we have reported bicyclic tetrapeptide disulfide HDAC inhibitors resembling FK228 with potent activity and enhanced selectivity. In the present study, we report the design and synthesis of several mono and bicyclic tetrapeptide thioester HDAC inhibitors that share the inhibition mechanism similar to Largazole. Most of the compounds showed HDAC1 and HDAC4 inhibition and p21 promoting activity in nanomolar ranges. Among these the monocyclic peptides 1, 2 and bicyclic peptide, 4 are notable demanding more advanced research to be promising anticancer drug candidates.
    Matched MeSH terms: Histone Deacetylases/genetics; Histone Deacetylases/metabolism; Histone Deacetylases/chemistry
  11. Siti Sarah CO, Md Shukri N, Mohd Ashari NS, Wong KK
    PeerJ, 2020;8:e9834.
    PMID: 32953271 DOI: 10.7717/peerj.9834
    Allergic rhinitis (AR) is a common disease affecting 400 million of the population worldwide. Nasal epithelial cells form a barrier against the invasion of environmental pathogens. These nasal epithelial cells are connected together by tight junction (TJ) proteins including zonula occludens-1 (ZO-1), ZO-2 and ZO-3. Impairment of ZO proteins are observed in AR patients whereby dysfunction of ZOs allows allergens to pass the nasal passage into the subepithelium causing AR development. In this review, we discuss ZO proteins and their impairment leading to AR, regulation of their expression by Th1 cytokines (i.e., IL-2, TNF-α and IFN-γ), Th2 cytokines (i.e., IL-4 and IL-13) and histone deacetylases (i.e., HDAC1 and HDAC2). These findings are pivotal for future development of targeted therapies by restoring ZO protein expression and improving nasal epithelial barrier integrity in AR patients.
    Matched MeSH terms: Histone Deacetylases
  12. Kamarudin MNA, Parhar I
    Oncotarget, 2019 Jun 11;10(39):3952-3977.
    PMID: 31231472 DOI: 10.18632/oncotarget.26994
    Despite numerous advancements in the last decade, human gliomas such as astrocytoma and glioblastoma multiforme have the worst prognoses among all cancers. Anti-psychotic drugs are commonly prescribed to treat mental disorders among cancer patients, and growing empirical evidence has revealed their antitumor, anti-metastatic, anti-angiogenic, anti-proliferative, chemo-preventive, and neo-adjuvant efficacies in various in vitro, in vivo, and clinical glioma models. Anti-psychotic drugs have drawn the attention of physicians and researchers owing to their beneficial effects in the prevention and treatment of gliomas. This review highlights data on the therapeutic potential of various anti-psychotic drugs as anti-proliferative, chemopreventive, and anti-angiogenic agents in various glioma models via the modulation of upstream and downstream molecular targets involved in apoptosis, autophagy, oxidative stress, inflammation, and the cell cycle in in vitro and in vivo preclinical and clinical stages among glioma patients. The ability of anti-psychotic drugs to modulate various signaling pathways and multidrug resistance-conferring proteins that enhance the efficacy of chemotherapeutic drugs with low side-effects exemplifies their great potential as neo-adjuvants and potential chemotherapeutics in single or multimodal treatment approach. Moreover, anti-psychotic drugs confer the ability to induce glioma into oligodendrocyte-like cells and neuronal-like phenotype cells with reversal of epigenetic alterations through inhibition of histone deacetylase further rationalize their use in glioma treatment. The improved understanding of anti-psychotic drugs as potential chemotherapeutic drugs or as neo-adjuvants will provide better information for their use globally as affordable, well-tolerated, and effective anticancer agents for human glioma.
    Matched MeSH terms: Histone Deacetylases
  13. Yadav A, Huang TC, Chen SH, Ramasamy TS, Hsueh YY, Lin SP, et al.
    J Neuroinflammation, 2021 Oct 16;18(1):238.
    PMID: 34656124 DOI: 10.1186/s12974-021-02273-1
    BACKGROUND: Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration.

    METHODS: We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation.

    RESULTS: Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group.

    CONCLUSIONS: Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro.

    Matched MeSH terms: Histone Deacetylases/metabolism*
  14. Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, et al.
    Bioorg Chem, 2021 11;116:105350.
    PMID: 34547645 DOI: 10.1016/j.bioorg.2021.105350
    In the present study, two novel series of compounds incorporating naphthyl and pyridyl linker were synthesized and biological assays revealed 5-((6-(2-(5-(2-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethoxy) naphthalene-2-yl)methylene)thiazolidine-2,4-dione (14b) as the most potent dual inhibitors of vascular endothelial growth factors receptor-2 (VEGFR-2) and histone deacetylase 4 (HDAC4). Compounds 13b, 14b, 17f, and 21f were found to stabilize HDAC4; where, pyridyl linker swords were endowed with higher stabilization effects than naphthyl linker. Also, 13b and 14b showed best inhibitory activity on VEGFR-2 as compared to others. Compound 14b was most potent as evident by in-vitro and in-vivo biological assessments. It displayed anti-angiogenic potential by inhibiting endothelial cell proliferation, migration, tube formation and also suppressed new capillary formation in the growing chick chorioallantoic membranes (CAMs). It showed selectivity and potency towards HDAC4 as compared to other HDAC isoforms. Compound 14b (25 mg/kg, i.p.) also indicated exceptional antitumor efficacy on in-vivo animal xenograft model of human colorectal adenocarcinoma (HT-29). The mechanism of action of 14b was also confirmed by western blot.
    Matched MeSH terms: Histone Deacetylases/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links