Displaying all 5 publications

Abstract:
Sort:
  1. Rambabu K, Bharath G, Thanigaivelan A, Das DB, Show PL, Banat F
    Bioresour Technol, 2021 Jan;319:124243.
    PMID: 33254466 DOI: 10.1016/j.biortech.2020.124243
    This study highlights biohydrogen production enrichment through NiO and CoO nanoparticles (NPs) inclusion to dark fermentation of rice mill wastewater using Clostridium beijerinckii DSM 791. NiO (~26 nm) and CoO (~50 nm) NPs were intrinsically prepared via facile hydrothermal method with polyhedral morphology and high purity. Dosage dependency studies revealed the maximum biohydrogen production characteristics for 1.5 mg/L concentration of both NPs. Biohydrogen yield was improved by 2.09 and 1.9 folds higher for optimum dosage of NiO and CoO respectively, compared to control run without NPs. Co-metabolites analysis confirmed the biohydrogen production through acetate and butyrate pathways. Maximum COD reduction efficiencies of 77.6% and 69.5% were observed for NiO and CoO inclusions respectively, which were higher than control run (57.5%). Gompertz kinetic model fitted well with experimental data of NPs assisted fermentation. Thus, NiO and CoO inclusions to wastewater fermentation seems to be a promising technique for augmented biohydrogen production.
    Matched MeSH terms: Hydrogen/analysis
  2. Ahmad Sobri MZ, Khoo KS, Sahrin NT, Ardo FM, Ansar S, Hossain MS, et al.
    Chemosphere, 2023 Oct;338:139526.
    PMID: 37459926 DOI: 10.1016/j.chemosphere.2023.139526
    The depletion of fossil fuel sources and increase in energy demands have increased the need for a sustainable alternative energy source. The ability to produce hydrogen from microalgae is generating a lot of attention in both academia and industry. Due to complex production procedures, the commercial production of microalgal biohydrogen is not yet practical. Developing the most optimum microalgal hydrogen production process is also very laborious and expensive as proven from the experimental measurement. Therefore, this research project intended to analyse the random time series dataset collected during microalgal hydrogen productions while using various low thermally pre-treated palm kernel expeller (PKE) waste via machine learning (ML) approach. The analysis of collected dataset allowed the derivation of an enhanced kinetic model based on the Gompertz model amidst the dark fermentative hydrogen production that integrated thermal pre-treatment duration as a function within the model. The optimum microalgal hydrogen production attained with the enhanced kinetic model was 387.1 mL/g microalgae after 6 days with 1 h thermally pre-treated PKE waste at 90 °C. The enhanced model also had better accuracy (R2 = 0.9556) and net energy ratio (NER) value (0.71) than previous studies. Finally, the NER could be further improved to 0.91 when the microalgal culture was reused, heralding the potential application of ML in optimizing the microalgal hydrogen production process.
    Matched MeSH terms: Hydrogen/analysis
  3. Boey CC
    J Paediatr Child Health, 2001 Apr;37(2):157-60.
    PMID: 11328471
    OBJECTIVES: To determine the prevalence of lactase deficiency among Malaysian children with recurrent abdominal pain and to describe their clinical characteristics.

    METHODOLOGY: Twenty-four children referred consecutively to the University of Malaya Medical Centre who fulfilled Apley's criteria (at least three episodes of abdominal pain severe enough to affect normal activity over a period longer than 3 months) were tested for lactase deficiency using a pocket breath test analyser (BreatH2 meter; Europa Scientific, Cheshire, England). Lactulose was used to check for hydrogen-producing capacity.

    RESULTS: There were 14 males and 10 females in the study, consisting of five Malays, 14 Chinese and five Indians. Mean age was 9.9 years. Seventeen of the 24 children (70.8%) with recurrent abdominal pain who underwent the breath hydrogen test had a positive result. In those with a negative result, subsequent lactulose administration resulted in a positive rise in breath hydrogen. None of the 24 children developed abdominal pain during the test. All the Indian subjects, 71.4% of the Chinese subjects and 40% of the Malay subjects with recurrent abdominal pain had lactase deficiency. The proportion of boys and girls with lactase deficiency was similar (71.4 vs 70.0%, respectively). There was no significant difference between lactase sufficient and deficient children with recurrent abdominal pain with regard to sex, age, ethnic group and clinical features. Following a lactose-free diet, none of the children in the breath hydrogen positive and negative groups reported any appreciable difference in pain symptoms.

    CONCLUSIONS: The prevalence of lactase deficiency among this group of Malaysian children with recurrent abdominal pain was high, but lactase deficiency did not appear to play an important role in causing the symptoms.

    Matched MeSH terms: Hydrogen/analysis
  4. Lee WS, Davidson GP, Moore DJ, Butler RN
    J Paediatr Child Health, 2000 Aug;36(4):340-2.
    PMID: 10940167
    OBJECTIVE: To assess the validity and clinical application of a hand-held breath hydrogen (H2) analyzer (BreatH2, Europa Scientific, Crewe, UK).

    METHODOLOGY: Breath samples of patients referred to the Gastroenterology Unit, Women's and Children's Hospital, North Adelaide, South Australia, for confirmation of the diagnosis of carbohydrate malabsorption were analysed with the Quintron microlyzer (Quintron Instrument Co., Milwaukee, USA) and the BreatH2 analyser, using the Quintron microlyzer as the gold standard.

    RESULTS: Twenty-nine breath H2 tests (BHT) were performed in 29 patients aged 2 months to 61 years. The sensitivity and specificity of the BreatH2 analyser in detecting a positive BHT using the Quintron microlyser as the gold standard were 0.90 and 0.95 with positive and negative predictive values of 0.90 and 0.95, respectively. There was one false positive and one false negative reading. Bland-Altman plots showed a high degree of agreement between the values obtained with two different methods.

    CONCLUSIONS: The diagnosis of carbohydrate malabsorption, using a portable breath H2 analyser (BreatH2), achieved an acceptable degree of sensitivity and specificity, enabling it to be used where no alternative is available.

    Matched MeSH terms: Hydrogen/analysis*
  5. Rezk H, Nassef AM, Inayat A, Sayed ET, Shahbaz M, Olabi AG
    Sci Total Environ, 2019 Mar 25;658:1150-1160.
    PMID: 30677979 DOI: 10.1016/j.scitotenv.2018.12.284
    Fossil fuel depletion and the environmental concerns have been under discussion for energy production for many years and finding new and renewable energy sources became a must. Biomass is considered as a net zero CO2 energy source. Gasification of biomass for H2 and syngas production is an attractive process. The main target of this research is to improve the production of hydrogen and syngas from palm kernel shell (PKS) steam gasification through defining the optimal operating parameters' using a modern optimization algorithm. To predict the gaseous outputs, two PKS models were built using fuzzy logic based on the experimental data sets. A radial movement optimizer (RMO) was applied to determine the system's optimal operating parameters. During the optimization process, the decision variables were represented by four different operating parameters. These parameters include; temperature, particle size, CaO/biomass ratio and coal bottom ash (CBA) with their operating ranges of (650-750 °C), (0.5-1 mm), (0.5-2) and wt% (0.02-0.10), respectively. The individual and interactive effects of different combinations were investigated on the production of H2 and syngas yield. The optimized results were compared with experimental data and results obtained from Response Surface Methodology (RSM) reported in literature. The obtained optimal values of the operating parameters through RMO were found 722 °C, 0.92 mm, 1.72 and 0.06 wt% for the temperature, particle size, CaO/biomass ratio and coal bottom ash, respectively. The results showed that syngas production was significantly improved as it reached 65.44 vol% which was better than that obtained in earlier studies.
    Matched MeSH terms: Hydrogen/analysis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links