OBJECTIVE: Here, we sought to investigate whether genetic polymorphisms at IL13 are associated with the development of challenge-proven IgE-mediated food allergy.
METHOD: We genotyped nine IL13 "tag" single nucleotide polymorphisms (tag SNPs) in 367 challenge-proven food allergic cases, 199 food-sensitized tolerant cases and 156 non-food allergic controls from the HealthNuts study. 12-month-old infants were phenotyped using open oral food challenges. SNPs were tested using Cochran-Mantel-Haenszel test adjusted for ancestry strata. A replication study was conducted in an independent, co-located sample of four paediatric cohorts consisting of 203 food allergic cases and 330 non-food allergic controls. Replication sample phenotypes were defined by clinical history of reactivity, 95% PPV or challenge, and IL13 genotyping was performed.
RESULTS: IL13 rs1295686 was associated with challenge-proven food allergy in the discovery sample (P=.003; OR=1.75; CI=1.20-2.53). This association was also detected in the replication sample (P=.03, OR=1.37, CI=1.03-1.82) and further supported by a meta-analysis (P=.0006, OR=1.50). However, we cannot rule out an association with food sensitization. Carriage of the rs1295686 variant A allele was also associated with elevated total plasma IgE.
CONCLUSIONS AND CLINICAL RELAVANCE: We show for the first time, in two independent cohorts, that IL13 polymorphism rs1295686 (in complete linkage disequilibrium with functional variant rs20541) is associated with challenge-proven food allergy.
METHODS: Further to informed consent from 39 healthy subjects and 39 probable AD patients, 8.5 mL of peripheral blood was collected and serum was extracted. The differential levels of 12 serum cytokines extracted from peripheral blood samples were measured using Procarta Multiplex Cytokine and enzyme-linked immunoassay kits. Concentrations of cytokines were measured at 615 nm using a fluorometer.
RESULTS: Except for tumor necrosis factor-α, all classical pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12 and interferon-γ) were found to be significantly upregulated (P 13 anti-inflammatory cytokines were significantly downregulated (P 13 showed a high level of diagnostic accuracy (area under curve = 1 [95% confidence interval]). Both CXCL-10 and IL-13 also showed sensitivity of 100% and specificity of 100% for diagnosis of AD (cut-off values >53.65 ρg/mL and <9.315 ρg/mL, respectively).
CONCLUSIONS: Both the non-classical pro-inflammatory CXCL-10 and anti-inflammatory IL-13 cytokines showed promising potential as blood-based cytokine biomarkers for AD. This is the first study of non-classical cytokine profiles of Malaysian AD patients. Geriatr Gerontol Int 2017; 17: 839-846.
METHODS: Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL-40, its receptor interleukin-13 receptor α2 (IL-13Rα2), macrophage markers PU.1 and CD206, and the tissue-destructive protein matrix metalloproteinase 9 (MMP-9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte-macrophage colony-stimulating factor (GM-CSF)- or macrophage colony-stimulating factor (M-CSF)-skewed monocyte-derived macrophages were conducted to study the dynamics of YKL-40 production. Next, small interfering RNA-mediated knockdown of YKL-40 in GM-CSF-skewed macrophages was performed to study its effect on MMP-9 production. Finally, the angiogenic potential of YKL-40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs).
RESULTS: YKL-40 was abundantly expressed by a CD206+MMP-9+ macrophage subset in inflamed temporal arteries and aortas. GM-CSF-skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL-40 compared to M-CSF-skewed macrophages (P = 0.039). In inflamed temporal arteries, IL-13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL-40 led to a 10-50% reduction in MMP-9 production by macrophages, whereas exposure of HMVECS to YKL-40 led to significantly increased tube formation.
CONCLUSION: In GCA, a GM-CSF-skewed, CD206+MMP-9+ macrophage subset expresses high levels of YKL-40 which may stimulate tissue destruction and angiogenesis through IL-13Rα2 signaling. Targeting YKL-40 or GM-CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.