METHODS: A cross sectional study involve retrospective record review were done involving 90 MRSA positive isolates between November 2016 and October 2017. Multiplex PCR was performed to detect femA, mecA and PVL genes. Clinical presentation and outcomes of patients were reviewed and presented as descriptive analysis.
RESULTS: All of the 90 MRSA isolates included in this study were positive for femA and mecA genes following PCR. PVL gene was detected in 20% (n = 18) of the isolates of which 61.1% (n = 11) were community acquired infections and 38.8% (n = 7) were hospital acquired. Case distribution from community acquired infections include patients with skin and soft tissue infections (33.3%, n = 6), infected diabetic foot ulcers (16.7%, n = 3), and one patient each (5.5%, n = 1) for community acquired pneumonia and meningitis. Half of the PVL positive MRSA cases (50%, n = 9) were having sepsis and four of them succumbed to death due to severe infection.
CONCLUSION: This study shows a high prevalence of PVL positive MRSA infection in our population. Skin and soft tissue infections accounting for the major sources. In addition, the presence of the PVL gene is associated with increased risk for developing sepsis.
Methods: S. aureus
strains were isolated from the nasal swabs of 200 health sciences students of a Malaysian university. Twelve classes of antibiotics were used to evaluate the antimicrobial susceptibility profiles with the macrolide-lincosamide-streptogramin B (MLSB) phenotype for inducible clindamycin resistance determined by the double-diffusion test (D-test). Carriage of resistance and virulence genes was performed by PCR onS. aureusisolates that were methicillin resistant, erythromycin resistant and/or positive for the leukocidin gene,pvl(n=15).
Results: Forty-nine isolates were viable and identified asS. aureuswith four of the isolates characterized as methicillin-resistantS. aureus(MRSA; 2.0%). All isolates were susceptible to the antibiotics tested except for penicillin (resistance rate of 49%), erythromycin (16%), oxacillin (8%), cefoxitin (8%) and clindamycin (4%). Of the eight erythromycin-resistant isolates, iMLSBwas identified in five isolates (three of which were also MRSA). The majority of the erythromycin-resistant isolates harbored themsrAgene (four iMLSB) with the remaining iMLSBisolate harboring theermCgene.
Conclusion: The presence of MRSA isolates which are also iMLSBin healthy individuals suggests that nasal carriage may play a role as a potential reservoir for the transmission of these pathogens.
METHODS: Swabs from four body sites of 129 HIV-infected patients were cultured for S. aureus and identified by standard microbiological procedures. The isolates were subjected to antimicrobial susceptibility testing by disk diffusion against penicillin, erythromycin, clindamycin, and cotrimoxazole. PCR was used to detect the PVL gene and genetic relationship between the isolates was determined by using pulse field gel electrophoresis.
RESULTS: A total of 51 isolates of S. aureus were obtained from 40 (31%) of the patients. The majority (43.1%) of the isolates were obtained from the anterior nares. Thirteen (25.5%) of all the isolates were resistant to more than one category of antibiotics, with one isolate identified as MRSA. Thirty-eight (74.5%) isolates (including the MRSA isolate) carried PVL gene where the majority (44.7%) of these isolates were from the anterior nares. A dendogram revealed that the isolates were genetically diverse with 37 distinct pulsotypes clustered in 11 groups.
CONCLUSION: S. aureus obtained from multiple sites of the HIV patients were genetically diverse without any clonality observed.
IMPORTANCE: With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.