Displaying all 6 publications

Abstract:
Sort:
  1. Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, et al.
    Front Pharmacol, 2017;8:519.
    PMID: 28848436 DOI: 10.3389/fphar.2017.00519
    In many developing countries, jaundice is the common symptom of hepatic diseases which are a major cause of mortality. The use of natural product-based therapies is very popular for such hepatic disorders. A great number of medicinal plants have been utilized for this purpose and some facilitated the discovery of active compounds which helped the development of new synthetic drugs against jaundice. However, more epidemiological studies and clinical trials are required for the practical implementation of the plant pharmacotherapy of jaundice. The focus of this second part of our review is on several of the most prominent plants used against jaundice identified in the analysis performed in the first part of the review viz. Andrographis paniculata (Burm.f.) Nees, Silybum marianum (L.) Gaertn., Terminalia chebula Retz., Glycyrrhiza glabra L. and some species of genus Phyllanthus. Furthermore, we discuss their physiological effects, biologically active ingredients, and the potential mechanisms of action. Some of the most important active ingredients were silybin (also recommended by German commission), phyllanthin and andrographolide, whose action leads to bilirubin reduction and normalization of the levels of relevant serum enzymes indicative for the pathophysiological status of the liver.
    Matched MeSH terms: Milk Thistle
  2. Anwar S, Madkor HR, Ahmed N, Wagih ME
    Indian J Pharmacol, 2018 9 1;50(3):108-115.
    PMID: 30166747 DOI: 10.4103/ijp.IJP_660_16
    OBJECTIVE: Silymarin, extracted from the seeds of Silybum marianum L. (Milk thistle), is traditionally used for treating various illnesses such as diabetes, cancer, inflammation, hepatitis, liver cirrhosis, and renal problems. Acute cytotoxicity and genotoxicity studies have been reported with ambiguous outcomes; however, its relevant anticlastogenic potential is not yet evaluated. This study was aimed to evaluate in vivo subacute anticlastogenic properties of silymarin to validate its use as a medicinal agent.

    MATERIALS AND METHODS: Silymarin was isolated from seeds of milk thistle. Various genotoxicity bioassays of silymarin were performed using mice. First, the bone marrow cell proliferation was estimated by calculating mitotic index. Second, the chromosomal abnormalities in mice bone marrow cells were studied. Third, micronucleated polychromatic erythrocytes (MPE) test and in vivo activation of sister chromatid exchanges (SCEs) were carried out in mice bone marrow cells. Finally, primary spermatocytes were analyzed to estimate genotoxic effect of silymarin on germ cells.

    RESULTS: We found that silymarin is capable of inducing a significant increase (P ≤ 0.05) in cell proliferation of bone marrow cells. There is no increase in chromosomal aberrations following silymarin treatments. Results clearly showed that it significantly (P ≤ 0.05) decreased the MPE. Likewise, it was found to be a negative inducer of SCEs. It decreased in total abnormal metaphase, SCEs, MPE, and aberrant diakinesis.

    CONCLUSION: The results demonstrated that silymarin has a strong anticlastogenic activity upon mice genome in somatic and germ cells, indicating its safe use as a medicinal substance. Furthermore, it is not only safe but also has protective effect from clastogens.

    Matched MeSH terms: Milk Thistle/chemistry*
  3. Mohd Fozi NF, Mazlan M, Shuid AN, Isa Naina M
    Curr Drug Targets, 2013 Dec;14(14):1659-66.
    PMID: 24093748
    Osteoporosis is a progressive disease of the skeleton characterised by bone fragility due to a reduction in bone mass and possibly to alteration in bone architecture that lead to a propensity to fracture with minimum trauma. Most osteoporotic fractures occur at locations rich in trabecular or cancellous bone and usually related to post menopausal women. Recently, silymarin received attention due to its alternative beneficial effect on bone formation. It is a mixture of flavonoids with powerful antioxidant properties. This review focuses on the use of milk thistle or silymarin for the treatment of osteoporosis that may be related to fracture bone. Silymarin shows potent antioxidant herb that may modulate multiple genes in favour of helping to build bone and prevent bone loss. In the mouse fracture healing model, silymarin supplementation improved tibial healing with elevated BMD and serum levels of ALP and osteocalcin. Silymarin also demonstrated clear estrogenic antiosteoporotic effects in bone structure. Silymarin appears to play a crucial role to prevent bone loss and might regulate osteogenesis and may be beneficial for fracture healing. If silymarin is considered for the use of post menopausal women, it may be used for the treatment of osteoporosis. It would be of great benefit to postmenopausal women to develop an oestrogen antagonist that is as potent and efficacious as oestrogen in preventing bone loss without the major side effect associated with HRT.
    Matched MeSH terms: Milk Thistle/chemistry*
  4. Wah Kheong C, Nik Mustapha NR, Mahadeva S
    Clin Gastroenterol Hepatol, 2017 Dec;15(12):1940-1949.e8.
    PMID: 28419855 DOI: 10.1016/j.cgh.2017.04.016
    BACKGROUND & AIMS: Silymarin is a complex mixture of 6 major flavonolignans and other minor polyphenolic compounds derived from the milk thistle plant Silybum marianum; it has shown antioxidant, anti-inflammatory and antifibrotic effects, and may be useful in patients with nonalcoholic fatty liver disease (NAFLD). We aimed to study the efficacy of silymarin in patients with nonalcoholic steatohepatitis (NASH)-the more severe form of NAFLD.

    METHODS: We performed a randomized, double-blind, placebo-controlled trial of consecutive adults with biopsy-proven NASH and a NAFLD activity score (NAS) of 4 or more at a tertiary care hospital in Kuala Lumpur, Malaysia, from November 2012 through August 2014. Patients were randomly assigned to groups given silymarin (700 mg; n = 49 patients) or placebo (n = 50 patients) 3 times daily for 48 weeks. After this 48-week period, liver biopsies were repeated. The primary efficacy outcome was a decrease of 30% or more in NAS; findings from 48-week liver biopsies were compared with those from the baseline biopsy. Secondary outcomes included changes in steatosis, lobular inflammation, hepatocyte ballooning, NAS and fibrosis score, and anthropometric measurements, as well as glycemic, lipid, and liver profiles and liver stiffness measurements.

    RESULTS: The percentage of patients achieving the primary efficacy outcome did not differ significantly between the groups (32.7% in the silymarin group vs 26.0% in the placebo group; P = .467). A significantly higher proportion of patients in the silymarin group had reductions in fibrosis based on histology (reductions of 1 point or more; 22.4%) than did the placebo group (6.0%; P = .023), and based on liver stiffness measurements (decrease of 30% or more; 24.2%) than did the placebo group (2.3%; P = .002). The silymarin group also had significant reductions in mean aspartate aminotransferase to platelet ratio index (reduction of 0.14, P = .011 compared with baseline), fibrosis-4 score (reduction of 0.20, P = .041 compared with baseline), and NAFLD fibrosis score (reduction of 0.30, P < .001 compared with baseline); these changes were not observed in the placebo group (reduction of 0.07, P = .154; increase of 0.18, P = .389; and reduction of 0.05, P = .845, respectively). There was no significant difference between groups in number of adverse events; adverse events that occurred were not attributed to silymarin.

    CONCLUSIONS: In a randomized trial of 99 patients, we found that silymarin (700 mg, given 3 times daily for 48 weeks) did not reduce NAS scores by 30% or more in a significantly larger proportion of patients with NASH than placebo. Silymarin may reduce liver fibrosis but this remains to be confirmed in a larger trial. It appears to be safe and well tolerated. ClinicalTrials.gov: NCT02006498.

    Matched MeSH terms: Milk Thistle
  5. Mohammadi Arvanag F, Bayrami A, Habibi-Yangjeh A, Rahim Pouran S
    Mater Sci Eng C Mater Biol Appl, 2019 Apr;97:397-405.
    PMID: 30678925 DOI: 10.1016/j.msec.2018.12.058
    Green synthesis of ZnO nanoparticles (NPs) using the plants' extract and their potential application have driven a tremendous interest in recent years. This study reports a green microwave-assisted method for synthesis of ZnO NPs using Silybum marianum L. seed extract. Characteristics of the as-prepared sample was explored in terms of crystalline phase, morphology, composition, surface area, optical, and thermal properties. The particles of the biosynthesized sample (ZnO/extract) had smaller sizes than the chemically produced one (ZnO). The existence of biomolecules from Silybum marianum L seed extract linked to the ZnO/extract sample was approved by various analyses. The ZnO/extract sample was used for treating alloxan-induced diabetic rats and its efficiency was compared with ZnO, extract, and insulin treatments. For this purpose, the levels of blood glucose, insulin, total cholesterol, total triglyceride, and high-density lipoprotein were measured before and after treating with the studied treatment agents and compared with each other. Moreover, the antibacterial activities of both ZnO samples were investigated against E. coli to assess their potential antibacterial application. From the results, ZnO/extract NPs represented an outstanding performance in overcoming the diabetic disorders and good antibacterial activity against the studied bacteria.
    Matched MeSH terms: Milk Thistle/chemistry
  6. Rahim Pouran S, Bayrami A, Mohammadi Arvanag F, Habibi-Yangjeh A, Darvishi Cheshmeh Soltani R, Singh R, et al.
    Colloids Surf B Biointerfaces, 2020 May;189:110878.
    PMID: 32087528 DOI: 10.1016/j.colsurfb.2020.110878
    In this research, a milk thistle seed extract (MTSE)-rich medium was used as a capping and reducing agent for the one-pot biosynthesis of ZnO/Ag (5 wt%) nanostructure. The sample was systematically characterized through various techniques and its strong biomolecule‒metal interface structure was supported by the results. The efficacy of the derived nanostructure (MTSE/ZnO/Ag) was evaluated in vivo on the basis of its therapeutic effects on the main complications of Type 1 diabetes (hyperglycemia, hyperlipidemia, and insulin deficiency). For this purpose, the changes in the plasma values of fasting blood glucose, total cholesterol, total triglyceride, high-density lipoprotein cholesterol, and insulin in alloxan-diabetic Wistar male rats were compared with those in healthy and untreated diabetic controls after a treatment period of 16 days. The antidiabetic results of MTSE/ZnO/Ag were compared with those obtained from pristine ZnO, MTSE, and insulin therapies. The health conditions of the rats with Type 1 diabetes were significantly enhanced after treatment with MTSE/ZnO/Ag (p 
    Matched MeSH terms: Milk Thistle/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links