Displaying all 13 publications

Abstract:
Sort:
  1. Sundram BM, Dahlui M, Chinna K
    Ind Health, 2016 Jun 10;54(3):204-14.
    PMID: 26726829 DOI: 10.2486/indhealth.2014-0091
    The aim of this study was to examine the effectiveness of Progressive Muscle Relaxation (PMR) as part of a Worksite Health Promotion Program on self-perceived stress, anxiety and depression among male automotive assembly-line workers through a quasi-experimental trial. Two assembly plants were chosen with one receiving PMR therapy and the other Pamphlets. Intention-to-treat analysis was conducted to test the effectiveness of the relaxation therapy. Stress, Depression and Anxiety levels were measured using the shortened DASS-21 questionnaire. Data were analyzed using Chi-square, Independent sample t test and Repeated-measures analysis of variance to test the significance of the effects of intervention (time * group) for the measures of Stress, Depression and Anxiety. Significant favourable intervention effects on stress were found in the PMR group (Effect size=0.6) as compared to the Pamphlet group (Effect size=0.2). There was a significant group *time interaction effect (p<0.001) on Stress levels. Depression and Anxiety levels were minimal at baseline in both the groups with mild or no reduction in levels. The improvement in stress levels showed the potential of PMR therapy as a coping strategy at the workplace. Further research in this field is necessary to examine the beneficial effects of coping strategies in the workplace.
    Matched MeSH terms: Muscle Relaxation*
  2. Isa MR, Moy FM, Abdul Razack AH, Zainuddin ZM, Zainal NZ
    Asian Pac J Cancer Prev, 2013;14(4):2237-42.
    PMID: 23725119
    BACKGROUND: The aim of this study was to determine the impact of applied progressive muscle relaxation training on the levels of depression, anxiety and stress among prostate cancer patients.

    MATERIALS AND METHODS: A quasi-experimental study was conducted at the University Malaya Medical Centre (UMMC) and Universiti Kebangsaan Malaysia Medical Centre (UKMMC) over six months. Prostate cancer patients from UMMC received the intervention and patients from UKMMC were taken as controls. The level of depression, anxiety and stress were measured using Depression, Anxiety Stress Scales - 21 (DASS-21).

    RESULTS: A total of 77 patients from the UMMC and 78 patients from the UKMMC participated. At the end of the study, 90.9% and 87.2% of patients from the UMMC and UKMMC groups completed the study respectively. There were significant improvements in anxiety (p<0.001, partial ?2=0.198) and stress (p<0.001, partial ?2=0.103) at the end of the study in those receiving muscle training. However, there was no improvement in depression (p=0.956).

    CONCLUSIONS: The improvement in anxiety and stress showed the potential of APMRT in the management of prostate cancer patients. Future studies should be carried out over a longer duration to provide stronger evidence for the introduction of relaxation therapy among prostate cancer patients as a coping strategy to improve their anxiety and stress.

    Matched MeSH terms: Muscle Relaxation*
  3. Yeh-Siang L, Subramaniam G, Hadi AH, Murugan D, Mustafa MR
    Molecules, 2011 Apr 06;16(4):2990-3000.
    PMID: 21471938 DOI: 10.3390/molecules16042990
    Generation of reactive oxygen species plays a pivotal role in the development of cardiovascular diseases. The present study describes the effects of the methanolic extract of Phoebe grandis (MPG) stem bark on reactive oxygen species-induced endothelial dysfunction in vitro. Endothelium-dependent (acetylcholine, ACh) and -independent relaxation (sodium nitroprusside, SNP) was investigated from isolated rat aorta of Sprague-Dawley (SD) in the presence of the β-NADH (enzymatic superoxide inducer) and MPG extract. Superoxide anion production in aortic vessels was measured by lucigen chemiluminesence. Thirty minutes incubation of the rat aorta in vitro with β-NADH increased superoxide radical production and significantly inhibited ACh-induced relaxations. Pretreatment with MPG (0.5, 5 and 50 μg/mL) restored the ACh-induced relaxations (R(max): 92.29% ± 2.93, 91.02% ± 4.54 and 88.31 ± 2.36, respectively) in the presence of β-NADH. MPG was ineffective in reversing the impaired ACh-induced relaxations caused by pyrogallol, a non-enzymatic superoxide generator. Superoxide dismutase (a superoxide scavenger), however, reversed the impaired ACh relaxations induced by both β-NADH and pyrogallol. MPG also markedly inhibited the β-NADH-induced generation of the superoxide radicals. Furthermore, MPG scavenging peroxyl radicals generated by tBuOOH (10⁻⁴ M).These results indicate that MPG may improve the endothelium dependent relaxations to ACh through its scavenging activity as well as by inhibiting the NADH/NADPH oxidase induced generation of superoxide anions.
    Matched MeSH terms: Muscle Relaxation/drug effects
  4. Tan HM
    Int. J. Androl., 2000;23 Suppl 2:87-8.
    PMID: 10849506
    The quest for improving and maintaining sexual function has been going on since time immemorial. The advent of an effective oral drug, sildenafil, has brought about unprecedented open discussion on male erectile dysfunction, and gas accelerated the pace of development of new therapies for erectile dysfunction. New knowledge in the physiology of sexual function has enabled researchers to target drug treatment at the whole network of the central nervous system and the numerous cascadic enzymatic reactions leading to relaxation of the corporal smooth muscle. One of the brightest potential applications of future molecular technology in the study of erectile dysfuction is in the utilization of gene therapy.
    Matched MeSH terms: Muscle Relaxation/drug effects
  5. Sharifah Maimunah SM, Hashim HA
    Percept Mot Skills, 2016 Feb;122(1):227-37.
    PMID: 27420318 DOI: 10.1177/0031512515625383
    This study compares two versions of progressive muscle relaxation (PMR) training (7 and 16 muscle groups) on oxygen consumption (VO2), heart rates, rating of perceived exertion and choice reaction time. Football (soccer) players (N = 26; M age = 13.4 yr., SD = 0.5) were randomly assigned to either 7 muscle groups PMR, 16 muscle groups PMR, or a control group. PMR training requires the participants to tense a muscle, hold the muscle contraction, and then relax it. Measurement was conducted prior to and after the completion of 12 sessions of PMR. The dependent variables were measured following four bouts of intermittent exercise consisting of 12 min. of running at 60% VO2max for 10 min. followed by running at 90% VO2max for 2 min. with a 3-min. rest for each bout. Lower VO2, heart rate, perceived exertion, and quicker reaction time were expected in both relaxation groups compared to the control group. The results revealed a significant reduction in heart rates and choice reaction time for both relaxation groups, but the longer version produced significantly quicker choice reaction time.
    Matched MeSH terms: Muscle Relaxation/physiology*
  6. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Diabetes Res Clin Pract, 2006 Jul;73(1):1-7.
    PMID: 16378655 DOI: 10.1016/j.diabres.2005.11.004
    The present work examined ex vivo the acute effect of quercetin on diabetic rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the alpha(1)-adrenergic agonist phenylephrine (PE). Responses were compared to those of aortic rings from age- and sex-matched euglycemic rats. Compared to euglycemic rat aortic rings, diabetic rings showed less relaxation in response to ACh and SNP, and greater contraction in response to PE. Pretreatment with quercetin (10microM, 20min) increased ACh-induced relaxation and decreased PE-induced contraction in diabetic, but did not affect euglycemic rat aortic ring responses. Following pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME, 10microM), quercetin reduced PE-induced contractions in both aortic ring types, although l-NAME attenuated the reduction in the diabetic rings. Quercetin did not alter SNP vasodilatory effects in either ring type compared to their respective controls. These findings indicate that quercetin acutely improved vascular responsiveness in blood vessels from diabetic rats, and that these effects were mediated, at least in part, by enhanced endothelial nitric oxide bioavailability. These effects of quercetin suggest the possible beneficial effects of quercetin in vivo in experimental diabetes and possibly in other cardiovascular diseases.
    Matched MeSH terms: Muscle Relaxation/drug effects
  7. Tee BH, Hoe SZ, Cheah SH, Lam SK
    Med Princ Pract, 2017;26(3):258-265.
    PMID: 28226311 DOI: 10.1159/000464363
    OBJECTIVE: This study was conducted to investigate the mechanisms of action of Eurycoma longifolia in rat corpus cavernosum.

    MATERIALS AND METHODS: Tincture of the roots was concentrated to dryness by evaporating the ethanol in vacuo. This ethanolic extract was partitioned into 5 fractions sequentially with hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The corpus cavernosum relaxant activity of each fraction was investigated. The DCM fraction which showed the highest potency in relaxing phenylephrine-precontracted corpora cavernosa was purified by column chromatography. The effects of the most potent DCM subfraction in relaxing phenylephrine-precontracted corpora cavernosa, DCM-I, on angiotensin I- or angiotensin II-induced contractions in corpora cavernosa were investigated. The effects of DCM-I pretreatment on the responses of phenylephrine-precontracted corpora cavernosa to angiotensin II or bradykinin were also studied. An in vitro assay was conducted to evaluate the effect of DCM-I on angiotensin-converting enzyme activity.

    RESULTS: Fraction DCM-I decreased the maximal contractions (100%) evoked by angiotensin I and angiotensin II to 30 ± 14% and 26 ± 16% (p < 0.001), respectively. In phenylephrine-precontracted corpora cavernosa, DCM-I pretreatment caused angiotensin II to induce 82 ± 27% relaxation of maximal contraction (p < 0.01) and enhanced (p < 0.001) bradykinin-induced relaxations from 47 ± 8% to 100 ± 5%. In vitro, DCM-I was able to reduce (p < 0.001) the maximal angiotensin-converting enzyme activity to 78 ± 0.24%.

    CONCLUSION: Fraction DCM-I was able to antagonize angiotensin II-induced contraction to cause corpus cavernosum relaxation via inhibition of angiotensin II type 1 receptor and enhance bradykinin-induced relaxation through inhibition of angiotensin-converting enzyme.

    Matched MeSH terms: Muscle Relaxation/drug effects
  8. Sukardi, S., Yaakub, H., Ganabadi, S., Cheng, L.H.
    Malays J Nutr, 2006;12(2):201-211.
    MyJurnal
    L-arginine is an amino acid, which serves as the sole substrate for nitric oxide (NO) synthesis with the concomitant formation of L-citrulline in biologic system. NO has been demonstrated to be involved in smooth muscle relaxation and vasodilation, immune regulation and neurotransmission. It also has an important function as both intercellular and intracellular signals in many physiological systems, including the reproductive system where NO mediates penis erection. This study was undertaken to determine the effects of L-arginine on sperm motility, sperm count, and the nitric oxide level in the seminal plasma. Twelve sexually matured male rabbits (Oryctolagus cuniculus) were randomly divided into four groups with three rabbits each, which were control, low, medium, and high concentration groups. The treatment groups were force-fed with 100mg/kg, 200mg/kg, and 300mg/kg body weight of L-arginine for four weeks, whereas the control group was force-fed with water. Semen samples were collected every three days alternatively for a week before starting treatment and then after four weeks of treatment. Pre-treatment and post-treatment results were compared. Semen samples were collected using artificial vaginas from each group for sperm analysis such as sperm motility, sperm count and NO level in seminal plasma. Sperm motility and sperm count were analysed manually under microscope (twenty power objective), using a Makler counting chamber. NO levels in the seminal plasma were determined using Griess reaction. The results obtained from this study showed that oral consumption of L-arginine exerted a significant (p
    Matched MeSH terms: Muscle Relaxation
  9. Ajay M, Gilani AU, Mustafa MR
    Life Sci, 2003 Dec 19;74(5):603-12.
    PMID: 14623031
    The potency, structure-activity relationship, and mechanism of vasorelaxation of a series of flavonoids, representing different subclasses (flavonols: fisetin, rutin, quercetin; flavones: chrysin, flavone, baicalein; flavanones: naringenin, naringin; isoflavones: diadzein and flavanes: epigallo catechin gallate), were examined in the isolated rat aorta. Most of the flavonoids tested showed concentration dependent relaxant effects against K+ (80 mM) and phenylephrine (PE, 0.1 microM)-induced contractions with a greater inhibition of the responses to the alpha1-adrenoceptor agonist. The relaxant effects of most of the flavonoids involve in part the release of nitric oxide and prostaglandins from the endothelium as pretreatment with L-NAME and indomethacin attenuated the responses. In addition, the relaxant action of the flavonoids includes inhibition of Ca+2 influx and release of Ca+2 from intracellular stores. A structure-activity relationship amongst the flavonoids was suggested.
    Matched MeSH terms: Muscle Relaxation/drug effects
  10. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Clin Exp Pharmacol Physiol, 2006 Apr;33(4):345-50.
    PMID: 16620299
    1. There is a growing interest in the anti-oxidant characteristics and use of flavonoids in the management of cardiovascular diseases. The cardiovascular mechanism of action of these plant derivatives remains controversial. This study compared the effects of the flavonoid quercetin with those of the anti-oxidant vitamin ascorbic acid (vitamin C) on the reactivity of aortic rings from spontaneously hypertensive rats (SHR). 2. The phenylephrine (PE)-induced contractile and the endothelium-dependent and independent relaxant responses of aortic rings from 21 to 22 week old SHR and age-matched normotensive Wistar (WKY) rats were observed in the presence of quercetin or ascorbic acid. All the experiments were performed in the presence of the cyclooxygenase inhibitor, indomethacin (10 micromol/L). 3. The endothelium-dependent and independent relaxations to acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were significantly lesser in the SHR compared to the WKY tissues whereas the contractile responses to PE were similar in both tissues. Pretreatment of WKY rings with quercetin or ascorbic acid had no effect on the responses to ACh or PE. In the SHR tissues, however, quercetin or ascorbic acid significantly improved the relaxation responses to ACh and reduced the contractions to PE with greater potency for quercetin. Both compounds lacked any effects on the responses to SNP in either aortic ring types. N(omega)-nitro-L-arginine methyl ester (l-NAME, 10 micromol/L) significantly attenuated the vasodepressor effects of quercetin and ascorbic acid, raising the responses to PE to a level similar to that observed in the control SHR tissues. In l-NAME pretreated aortic rings, quercetin and ascorbic acid inhibited the contractile responses to PE with the same magnitude in WKY and SHR tissues. 4. The present results suggest that acute exposure to quercetin improves endothelium-dependent relaxation and reduces the contractile responses of hypertensive aortae with a greater potency than ascorbic acid. This suggests a better vascular protection with this flavonoid than ascorbic acid in the SHR model of hypertension and possibly in human cardiovascular diseases.
    Matched MeSH terms: Muscle Relaxation/drug effects
  11. Tan YY, Wade JD, Tregear GW, Summers RJ
    Br J Pharmacol, 1998 Feb;123(4):762-70.
    PMID: 9517397
    1. The receptors for relaxin in the rat atria and uterus were investigated and compared by use of a series of synthetic and native relaxin analogues. The assays used were the positive chronotropic and inotropic effects in rat spontaneously beating, isolated right atrium and electrically driven left atrium and the relaxation of K+ precontracted uterine smooth muscle. 2. Relaxin analogues with an intact A- and B-chain were active in producing powerful chronotropic and inotropic effects in the rat isolated atria at nanomolar concentrations. Single-chain analogues and structural homologues of relaxin such as human insulin and sheep insulin-like growth factor I had no agonist action and did not antagonize the effect of the B29 form of human gene 2 relaxin. 3. Shortening the B-chain carboxyl terminal of human gene 1 (B2-29) relaxin to B2-26 reduced the activity of the peptide and removal of another 2 amino acid residues (B2-24) abolished the activity. This suggests that the B-chain length may be important for determination of the activity of relaxin. More detailed studies are needed to determine the effect of progressive amino acid removal on the structure and the bioactivity of relaxin. 4. Porcine prorelaxin was as active as porcine relaxin on a molar basis, suggesting that the presence of the intact C-peptide did not affect the binding of the prorelaxin to the receptor to produce functional responses. 5. Relaxin caused relaxation of uterine longitudinal and circular smooth muscle precontracted with 40 mM K+. The pEC50 values for human gene 2 and porcine relaxins were lower than those in the atrial assay, but rat relaxin had similar pEC50 values in both atrial and uterine assays. Rat relaxin was significantly less potent than either human gene 2 or porcine relaxin in the atrial assay, but in the uterine assay they were equipotent. The results suggest that the relaxin receptor or the signalling pathway in rat atria may differ from that in the uterus.
    Matched MeSH terms: Muscle Relaxation
  12. Swamy M, Sirajudeen KN, Chandran G
    Drug Chem Toxicol, 2009;32(4):326-31.
    PMID: 19793024 DOI: 10.1080/01480540903130641
    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity.
    Matched MeSH terms: Muscle Relaxation
  13. Wong AK, Teoh GS
    Anaesth Intensive Care, 1996 Apr;24(2):224-30.
    PMID: 9133197
    The quality of laryngoscopy and tracheal intubation with propofol augmented by alfentanil was investigated as an alternative technique for rapid tracheal intubation. 119 patients aged between 18 and 60 years (ASA 1 and 2) undergoing elective surgery were prospectively studied in a randomized double-blind controlled fashion. Tracheal intubation facilitated by suxamethonium 1.0 mg/kg alfentanil 15 mu g/kg alfentanil 30 mu g/kg or saline control was compared after propofol induction. The quality of laryngoscopy and intubation were graded according to jaw relaxation, ease of insertion of the endotracheal tube and coughing on intubation. Failure to intubate occurred in 4% and 17% with alfentanil 15 mu g/kg and saline control respectively Tracheal intubation was successful in all patients with alfentanil 30 mu g/kg and suxamethonium 1.0 mg/kg. Alfentanil 15 mu g/kg was not statistically significantly different from saline (P = 0.112). Alfentanil 30 mu g/kg provided similar overall intubating conditions (P = 0.5) to suxamethonium 1.0 mg/kg. Alfentanil in both dosages effectively attenuated the haemodynamic responses to laryngoscopy and tracheal intubation.
    Matched MeSH terms: Muscle Relaxation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links