Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Hon JX, Wahab NA, Karim AKA, Mokhtar NM, Mokhtar MH
    Int J Mol Sci, 2023 Oct 09;24(19).
    PMID: 37834449 DOI: 10.3390/ijms241915001
    Endometriosis, a non-malignant gynecological disorder influenced by estrogen, involves the growth of endometrial tissue outside the uterus. Its development includes processes such as inflammation, progesterone resistance, angiogenesis, and cell proliferation. Epigenetic factors, particularly the dysregulation of microRNAs (miRNAs), have emerged as key factors in these mechanisms in endometriosis. This review aims to unveil the intricate molecular processes that control inflammation, progesterone resistance, and miRNA functions in endometriosis. In addition, it provides a comprehensive overview of the current understanding regarding the involvement of miRNAs in the inflammatory aspects of this condition. This synthesis encompasses research investigating the molecular underpinnings of inflammation, along with the biogenesis and roles of miRNAs in endometriosis. Furthermore, it examines human studies and functional analyses to establish the intricate connection between miRNAs, inflammation, and progesterone resistance in the context of endometriosis. The results highlight the significant impact of dysregulated miRNAs on the inflammatory pathways and hormonal imbalances characteristic of endometriosis. Consequently, miRNAs hold promise as potential non-invasive biomarkers and targeted therapeutic agents aimed at addressing inflammation and enhancing the response to progesterone treatment in individuals with endometriosis.
    Matched MeSH terms: Progesterone/pharmacology
  2. Karim K, Giribabu N, Muniandy S, Salleh N
    Syst Biol Reprod Med, 2016;62(1):57-68.
    PMID: 26709452 DOI: 10.3109/19396368.2015.1112699
    Changes in the uterus expression of carbonic anhydrase (CA) II, III, IX, XII, and XIII were investigated under the influence of sex-steroids in order to elucidate mechanisms underlying differential effects of these hormones on uterine pH. Uteri of ovariectomised rats receiving over three days either vehicle, estrogen, or progesterone or three days estrogen followed by three days either vehicle or progesterone were harvested. Messenger RNA (mRNA) and protein levels were quantified by real-time PCR and Western blotting, respectively. The distribution of CA isoenzymes proteins were examined by immunohistochemistry. The levels of CAII, III, XII, and XIII mRNAs and proteins were elevated while levels of CAIX mRNA and protein were reduced following progesterone-only and estrogen plus progesterone treatment, compared to the control and estrogen plus vehicle, respectively. Following estrogen treatment, expression of CAII, IX, XII, and CAXIII mRNAs and proteins were reduced, but remained at a level higher than control, except for CAIX, where its level was higher than the control and following progesterone treatment. Under progesterone-only and estrogen plus progesterone influences, high levels of CAII, III, XII, and XIII were observed in uterine lumenal and glandular epithelia and myometrium. However, a high level of CAIX was observed only under the influence of estrogen at the similar locations. In conclusion, high expression of CAII, III, XII, and XIII under the influence of progesterone and estrogen plus progesterone could result in the reduction of uterine tissue and fluid pH; however, the significance of high levels of CAIX expression under the influence of estrogen remains unclear.
    Matched MeSH terms: Progesterone/pharmacology*
  3. Gholami K, Muniandy S, Salleh N
    Biomed Res Int, 2013;2013:840121.
    PMID: 23509787 DOI: 10.1155/2013/840121
    Precise uterine fluid pH regulation may involve the Na(+)/H(+)-exchanger (NHE). We hypothesized that NHE isoforms are differentially expressed under different sex steroid treatment and at different oestrous cycle phases which may explain the uterine fluid pH changes observed under these conditions.
    Matched MeSH terms: Progesterone/pharmacology*
  4. Bukar MM, Yusoff R, Ariff OM, Haron AW, Dhaliwal GK, Naing SW, et al.
    Reprod Biol, 2012 Nov;12(3):325-8.
    PMID: 23153704 DOI: 10.1016/j.repbio.2012.09.004
    The effects of estrus synchronization with prostaglandin F(2α) (PGF(2α)) and Controlled Internal Drug Release Device (CIDR) on ensuing antral follicular development were documented and compared to natural estrous cycles of non-seasonal tropical goats. Two to six follicular waves were observed, with the three-follicular wave pattern being most frequently observed (58%), followed by four follicular waves (31.6%) per estrous cycle. There were no significant differences (p>0.05) between the PGF(2α)- or CIDR-synchronized and natural estrous cycles nor between the synchronized and subsequent non-synchronized cycles in terms of the time of ovulation, the duration of inter-ovulatory intervals, daily numbers of antral follicles ≥3mm in diameter, and the number of follicular waves per cycle in the goats of the present study.
    Matched MeSH terms: Progesterone/pharmacology*
  5. Nabishah BM, Merican Z, Morat PB, Alias AK, Khalid BA
    Gen. Pharmacol., 1990;21(6):935-8.
    PMID: 2177714
    1. Steroid hormones have been shown to regulate the concentration of adrenergic and muscarinic receptors in many tissues. 2. The cyclic adenosine 3',5'-monophosphate (cAMP) content in rat lung tissues in response to either dexamethasone, corticosterone, deoxycorticosterone or progesterone for 7 days were measured following intraperitoneal injection of isoprenaline just before sacrificed. 3. There was a significant increase in cAMP level (P less than 0.001) in dexamethasone and corticosterone-treated rats compared to controls that received isoprenaline alone. 4. Pretreatment with deoxycorticosterone and progesterone suppressed the increase in cAMP in response to isoprenaline. 5. The effect of glucocorticoids in causing bronchodilatation in asthmatic patients is partly due to the restoration of adenyl cyclase responsiveness to beta-agonist.
    Matched MeSH terms: Progesterone/pharmacology
  6. Shahzad H, Giribabu N, Karim K, Muniandy S, Kassim NM, Salleh N
    Reprod Toxicol, 2017 04;69:276-285.
    PMID: 28341573 DOI: 10.1016/j.reprotox.2017.03.012
    Effects of quercetin on uterine fluid volume and aquaporin (AQP) expression in the uterus were investigated. Estradiol (E) or estradiol followed by progesterone (E+P) were given to ovariectomised rats with or without quercetin (10, 50 or 100mg/kg/day) treatment. Uteri were harvested and its inner/outer circumference ratio was determined. AQP-1, 2, 5 and 7 mRNA and protein levels in uterus were quantified by Real-time PCR and Western blotting respectively. Protein distribution was observed by immunohistochemistry. Administration of quercetin in E-treated rats decreased the uterine fluid volume and uterine AQP-2 expression. In E+P-treated rats, administration of 100mg/kg/day quercetin increased uterine fluid volume, AQP-1 and 2 expression but decreased AQP-7 expression in uterus. AQP-1 was distributed in stromal blood vessels while AQP-2, 5 and 7 were distributed in uterine epithelium.

    CONCLUSIONS: Quercetin-induced changes in uterine fluid volume and AQP subunits expression in uterus could affect the uterine reproductive functions under different sex-steroid influence.

    Matched MeSH terms: Progesterone/pharmacology*
  7. Nabishah BM, Khalid BA, Morat PB, Alias AK, Zainuddin M
    J Endocrinol, 1992 Jul;134(1):73-6.
    PMID: 1323640
    The possible role of cyclic adenosine 3',5'-monophosphate (cAMP) in mediating the action of steroid hormones was investigated using the rat lung. Male rats were adrenalectomized and treated with olive oil, dexamethasone, corticosterone, deoxycorticosterone (DOC) or progesterone. At the end of 10 days, 100 micrograms isoprenaline/kg was injected intraperitoneally 5 min before the animals were killed to stimulate cAMP production. Adrenalectomy significantly decreased cAMP levels in the rat lung. Dexamethasone and corticosterone pretreatment reversed the effect of adrenalectomy whereas progesterone pretreatment but not DOC pretreatment significantly decreased lung cAMP levels. Cyclic AMP levels in normal female rats, whether pregnant or not, were not significantly different from those in male rats. We concluded that the absence of glucocorticoid, as after adrenalectomy, decreased the cAMP levels in rat lungs and that this could be reversed by either dexamethasone or corticosterone replacement. Progesterone reduced the cAMP content in rat lungs by acting as a glucocorticoid antagonist or by acting directly via progesterone receptors.
    Matched MeSH terms: Progesterone/pharmacology
  8. Shiromwar SS, Chidrawar VR, Singh S, Chitme HR, Maheshwari R, Sultana S
    J Mol Neurosci, 2024 Jan 19;74(1):13.
    PMID: 38240858 DOI: 10.1007/s12031-023-02178-z
    Hypothalamus is central to food intake and satiety. Recent data unveiled the expression of N-methyl-D-aspartate receptors (NMDAR) on hypothalamic neurons and their interaction with GABAA and serotoninergic neuronal circuits. However, the precise mechanisms governing energy homeostasis remain elusive. Notably, in females, the consumption of progesterone-containing preparations, such as hormonal replacement therapy and birth control pills, has been associated with hyperphagia and obesity-effects mediated through the hypothalamus. To elucidate this phenomenon, we employed the progesterone-induced obesity model in female Swiss albino mice. Four NMDAR modulators were selected viz. dextromethorphan (Dxt), minocycline, d-aspartate, and cycloserine. Obesity was induced in female mice by progesterone administration for 4 weeks. Mice were allocated into 7 groups, group-1 as vehicle control (arachis oil), group-2 (progesterone + arachis oil), and group-3 as positive-control (progesterone + sibutramine); other groups were treated with test drugs + progesterone. Various parameters were recorded like food intake, thermogenesis, serum lipids, insulin, AST and ALT levels, organ-to-body weight ratio, total body fat, adiposity index, brain serotonin levels, histology of liver, kidney, and sizing of fat cells. Dxt-treated group has shown a significant downturn in body weight (p 
    Matched MeSH terms: Progesterone/pharmacology
  9. Karim K, Giribabu N, Muniandy S, Salleh N
    J. Membr. Biol., 2016 04;249(1-2):65-76.
    PMID: 26403527 DOI: 10.1007/s00232-015-9848-z
    We hypothesized that progesterone-induced decrease in uterine fluid pH involves V-ATPase. In this study, expression and functional activity of V-ATPase in uterus were investigated under progesterone influence. Ovariectomized adult female rats received subcutaneous injection of estradiol-17β (1 µg/kg/day) or progesterone (20 mg/kg/day) for 3 days or 3 days estradiol-17β followed by 3 days vehicle, progesterone, or estradiol-17β plus progesterone. Mifepristone, a progesterone receptor blocker, was concomitantly given to the rats which received progesterone. A day after last injection, rate of uterine fluid secretion, its HCO3 (-) concentration, and pH were determined via in vivo uterine perfusion in rats under anesthesia. V-ATPase inhibitor, bafilomycin, was introduced into the perfusion buffer, and changes in these parameters were observed. Expression of V-ATPase A1 and B1/2 proteins and mRNAs in uterus were quantified by Western blotting and real-time PCR, respectively. Distribution of these proteins was observed by immunohistochemistry. Our findings showed that under progesterone influence, uterine fluid secretion rate, HCO3 (-) concentration, and pH were significantly reduced. Administration of bafilomycin did not cause significant changes in fluid secretion rate; however, HCO3 (-) concentration and pH were significantly elevated. In parallel with these changes, expression of V-ATPase A1 and B1/2 proteins and mRNAs were significantly increased with these proteins highly distributed in uterine luminal and glandular epithelia. In conclusion, increased expression and functional activity of V-ATPase were most likely responsible for the decreased in uterine fluid pH observed under progesterone influence.
    Matched MeSH terms: Progesterone/pharmacology
  10. Ismail N, Giribabu N, Muniandy S, Salleh N
    Mol. Reprod. Dev., 2015 Jun;82(6):463-74.
    PMID: 26018621 DOI: 10.1002/mrd.22496
    The consistency of the cervical mucus changes with the reproductive cycle, which we hypothesized involved changing levels of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC), and cyclic adenosine mono-phosphate (cAMP). We therefore measured the abundance of each in the rat cervix under estrogen and progesterone influence to determine if the activity of these components could explain the changes in the consistency of cervical mucus. Ovariectomised adult female rats were treated with three days of either estrogen (1 μg/kg/day) or progesterone (20 mg/kg/day), or three days of estrogen followed by two days of either vehicle or progesterone or estrogen plus progesterone. In some groups, mifepristone (7 mg/kg/day) was concurrently given with progesterone. Animals were then sacrificed, and the cervix was harvested for protein and mRNA expression analyses by Western blot and real-time PCR, respectively. The distribution of proteins was investigated by immunohistochemistry, and levels of cAMP were determined by enzyme-linked immunosorbent assay (ELISA). Cftr mRNA, AC protein, and cAMP levels in cervical homogenates as well as the tissue distribution of CFTR and AC in endocervical epithelia were highest under estrogen influence; the opposite pattern was seen under progesterone influence. Cervical lumen circumference was highest under estrogen and lowest under progesterone. The effects of progesterone were antagonized by mifepristone. Therefore, increased abundance of CFTR, AC, and cAMP under estrogen influence could account for the increased fluid accumulation within the cervical lumen, which would contribute to lower cervical mucus consistency, whereas progesterone reverses this effect at the molecular and organ level.
    Matched MeSH terms: Progesterone/pharmacology*
  11. Nwe KH, Morat PB, Hamid A, Fadzilah S, Khalid BA
    Exp. Clin. Endocrinol. Diabetes, 1999;107(5):288-94.
    PMID: 10482040
    The 11beta-hydroxysteroid dehydrogenase (11beta-HSD) protects the testis from the inhibitory effects of corticosterone on testosterone (T) production. The objectives of the present studies were to determine the effects of deoxycorticosterone (DOC) and its mechanism of actions on testicular 11beta-HSD activity and plasma T levels after 7 days of treatment. The results revealed that at the end of 7 days treatment, DOC significantly increased testicular 11beta-HSD activity and plasma T levels in normal rats. However, the time course showed that high plasma T levels lowered 11beta-HSD activity on day 14 and by 21 days both the levels normalized. In adrenalectomized (ADX) rats, only the enzyme activity increased significantly but not plasma T levels. Spironolactone, a competitive inhibitor of mineralocorticoid receptor (MR), did not change testicular 11beta-HSD activity in both normal and DOC treated rats suggesting that DOC did not act through MR in increasing 11beta-HSD activity. On the other hand, spironolactone significantly decreased plasma T levels in DOC treated rats. Progesterone (P), a competitive inhibitor of glucocorticoid receptors (GR) or corticosterone significantly suppressed testicular enzyme activity and plasma T levels in DOC treated normal rats. Carbenoxolone which is an inhibitor of 11beta-HSD activity significantly depressed testicular 11beta-HSD activity and plasma T levels in DOC treated normal rats. This paper suggests that DOC increased testicular 11beta-HSD activity through GR; whilst increase in plasma T levels required functioning adrenal glands. The testicular 11beta-HSD is one of the regulators of T levels and vice versa.
    Matched MeSH terms: Progesterone/pharmacology
  12. Nwe KH, Morat PB, Khalid BA
    Gen. Pharmacol., 1997 May;28(5):661-4.
    PMID: 9184798
    1. Sex steroids have been shown to regulate the biosynthesis of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD). 2. In vitro studies showed that oestradiol (E2) or testosterone (T) can interfere with the bioassay of enzyme activity, but not progesterone (P4). 3. For in vivo studies, the activity of 11 beta-HSD in the testis of normal and adrenalectomized (ADX) adult male Wistar rats was determined following a daily IM injection of sex steroids for 7 days. 4. The 11 beta-HSD activity was significantly reduced (P < 0.01) either by E2 or T in normal and ADX rats. The enzyme activity in normal rats given both T and E2 was even lower (P < 0.001) than when E2 was given alone. 5. P4 given to normal and ADX rats increased the enzyme activity higher than normal (P < 0.001). 6. The presence of corticosteroids influenced the effects of E2, but not of T and P4, on 11 beta-HSD activity. 7. E2 and T downregulate 11 beta-HSD activity, whereas P4 increased it. E2 did not act through lowering T level.
    Matched MeSH terms: Progesterone/pharmacology
  13. Zarida H, Wan Zurinah WN, Zanariah J, Michael LK, Khalid BA
    Exp. Toxicol. Pathol., 1994 Mar;46(1):31-6.
    PMID: 7916223
    The effect of ovariectomy and sex hormone/s replacement in female rats was investigated by the determination of the tumour marker enzymes gamma-glutamyltranspeptidase (GGT) and alkaline phosphatase (ALP). This was compared to ovariectomized rats receiving sex hormone replacement and treated with carcinogen. Ovariectomy significantly increased the activity of plasma GGT. Plasma and microsomal ALP and microsomal GGT were unchanged. When replacements of estrogen (E), or progesterone (Prog), or combinations of both estrogen and progesterone were given to ovariectomized rats, the activity of plasma GGT was brought to the level of normal intact females. Treatment with carcinogen increased the PGGT activities in intact rats. In ovariectomized rats receiving carcinogen, the PGGT activities were significantly lower than in intact females and rats receiving both hormone replacement and carcinogen (p < 0.01). Carcinogen treatment in case of estrogen or progesterone replacement, either individually or in combination, showed GGT activities comparable to intact females receiving carcinogen. Both plasma and microsomal ALP were not affected by carcinogen administration. These results showed that ovariectomy reduced the severity of hepatocarcinogenesis while sex hormone replacement worsened the process.
    Matched MeSH terms: Progesterone/pharmacology*
  14. Rosnina Y, Jainudeen MR, Nihayah M
    Vet Rec, 1992 Feb 01;130(5):97-9.
    PMID: 1557879
    The superovulatory response to gonadotrophin treatment during different months of the year was investigated in Kambing kacang goats, a tropical breed, in Malaysia. Sixty-three cycling does, fitted with progesterone impregnated intravaginal sponges for 17 days, received two days before sponge withdrawal, an intramuscular injection of either 10, 15 or 20 mg of follicle stimulating hormone (FSH) or 500, 1000 or 1500 iu of equine chorionic gonadotrophin (eCG). The dose of FSH was divided into four decreasing daily doses and each daily dose was subdivided into two and administered at 07.00 and 19.00. Fifty-four does detected in oestrus were mated with fertile bucks. The ovarian response was determined by laparoscopy and eggs were recovered surgically five or six days after oestrus. The ovulatory response (mean +/- standard deviation) based on corpora lutea was higher in the FSH (13.4 +/- 8.4 corpora lutea per doe, n = 20) than the eCG-treated groups (6.4 +/- 5.1 corpora lutea per doe, n = 25) but the difference was not significant (P greater than 0.05). Does responded to gonadotrophins throughout the year with more than 50 per cent of does responding during the rainy months compared with less than 35 per cent responding during the dry months. This difference was statistically significant (P less than 0.05). Egg recovery was better in the FSH (6.8 +/- 5.3 per doe, n = 20) than the eCG groups (3.0 +/- 3.8 per doe, n = 21) but the difference was not significant (P greater than 0.05).
    Matched MeSH terms: Progesterone/pharmacology
  15. Gholami K, Muniandy S, Salleh N
    Int J Med Sci, 2013;10(9):1121-34.
    PMID: 23869188 DOI: 10.7150/ijms.5918
    Precise control of uterine fluid pH, volume and electrolytes is important for the reproductive processes. In this study, we examined the functional involvement of multiple proteins including Cystic Fibrosis Transmembrane Regulator (CFTR), Cl(-)/HCO3 (-) exchanger (SLC26A6), sodium-hydrogen exchanger-1 (NHE-1) and carbonic anhydrase (CA) in the regulation of these uterine fluid parameters.
    Matched MeSH terms: Progesterone/pharmacology
  16. Hambali Z, Ngah WZ, Wahid SA, Kadir KA
    Pathology, 1995 Jan;27(1):30-5.
    PMID: 7603748
    The effects of ovariectomy and hormone replacement in control and carcinogen treated female rats were investigated by measuring whole blood and liver glutathione (WGSH, HGSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GRx) and histological evaluation. Hepatocarcinogenesis was induced by diethylnitrosamine and 2-acetylaminofluorene. In control rats not receiving carcinogen, ovariectomy significantly increased the GST and GRx activities. Replacement with either estrogen or progesterone reduced the GST activities to below intact female values whereas replacement of both hormones together brought the GST activities to that of intact females. GRx activities were brought to intact female values by replacement with estrogen or progesterone, either singly or in combination. Neither ovariectomy nor sex hormone/s replacement influenced the levels of WGSH, HGSH and GPx activities. Carcinogen administration to intact rats increased all the parameters measured. Ovariectomized rats treated with carcinogen showed lower GPx and GRx activities at 2 mths. However, replacement with either progesterone or combined estrogen and progesterone increased GPx and GRx activities to original values. On the other hand GST and GPx activities in ovariectomized rats which had carcinogen treatment were lower than intact rats after 5 mths. Replacement with hormones either singly or both brought GST and GPx activities up to intact rat levels receiving carcinogen. The levels of WGSH, HGSH and GRx activities (5 mths) in carcinogen treated rats were not influenced by ovariectomy and/or hormone/s replacement. The results from this study suggested that ovariectomy reduced the severity of hepatocarcinogenesis which was restored by sex hormone/s replacement.
    Matched MeSH terms: Progesterone/pharmacology*
  17. Chinigarzadeh A, Muniandy S, Salleh N
    Environ Toxicol, 2017 Mar;32(3):832-844.
    PMID: 27235753 DOI: 10.1002/tox.22283
    We hypothesized that genistein can interfere with the regulation of uterine fluid volume, secretion rate and expression of aquaporin in the uterus by female sex-steroids, i.e., estrogen and progesterone. Therefore, the aims of this study were to investigate changes in these parameters in the presence of genistein and female sex-steroids.

    METHODS: Female Sprague-Dawley rats were ovariectomized and received 3-days estradiol-17β benzoate (E2) plus genistein (25, 50, or 100 mg kg(-1)  day(-1) ) or 3-days E2 followed by 3-days E2 plus progesterone with genistein (25, 50, or 100 mg kg(-1)  day(-1) ). A day after last treatment, uterine fluid secretion rate was determined by in vivo uterine perfusion with rats under anesthesia. Animals were sacrificed and uteri were harvested and subjected for histological analyses. Luminal/outer uterine circumference was determined and distribution of AQP-1, 2, 5, and 7 in endometrium was visualized by immunofluorescence. Expression of AQP-1, 2, 5, and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR respectively.

    RESULTS: Combined treatment of E2 with high dose genistein (50 and 100 mg kg(-1)  day(-1) ) resulted in significant decrease in uterine fluid volume, secretion rate and expression of AQP-1, 2, 5, and 7 proteins and mRNAs in uterus (p 

    Matched MeSH terms: Progesterone/pharmacology*
  18. Chinigarzadeh A, Muniandy S, Salleh N
    Steroids, 2016 11;115:47-55.
    PMID: 27521800 DOI: 10.1016/j.steroids.2016.08.007
    In this study, effects of estradiol, progesterone and genistein on uterine aquaporin (AQP)-1, 2, 5 and 7 expression were investigated in sex-steroid deficient state which could help to elucidate the mechanisms underlying uterine fluid volume changes that were reported under these hormone and hormone-like compound influences.

    METHODS: Uteri from ovariectomized, female Sprague-Dawley rats receiving seven days estradiol, progesterone or genistein (25, 50 and 100mg/kg/day) were harvested and levels of AQP-1, 2, 5 and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR (qPCR) respectively. Distribution of these proteins in uterus was observed by immunohistochemistry.

    RESULTS: Genistein caused a dose-dependent increase in uterine AQP-1, 2, 5 and 7 protein and mRNA expression, however at the levels lower than following estradiol or progesterone stimulations. Effects of genistein were antagonized by estradiol receptor blocker, ICI 182780. Estradiol caused the highest AQP-2 protein and mRNA expression while progesterone caused the highest AQP-1, 5 and 7 protein and mRNA expression in uterus. AQP-1, 2, 5 and 7 protein were found to be distributed in the myometrium as well as in uterine luminal and glandular epithelia and endometrial blood vessels. In conclusion, the observed effects of estradiol, progesterone and genistein on uterine AQP-1, 2, 5 and 7 expression could help to explain the differences in the amount of fluid accumulated in the uterus under these different conditions.

    Matched MeSH terms: Progesterone/pharmacology*
  19. Gholami K, Muniandy S, Salleh N
    Res Vet Sci, 2014 Feb;96(1):164-70.
    PMID: 24295739 DOI: 10.1016/j.rvsc.2013.11.005
    Oestrogen-induced uterine fluid sodium (Na(+)) and bicarbonate (HCO3(-)) secretion may involve SLC4A4. We hypothesized that uterine SLC4A4 expression changes under different sex-steroid influence, therefore may account for the fluctuation in uterine fluid Na(+) and HCO3(-) content throughout the oestrous cycle. The aim of this study is to investigate the differential effects of sex-steroids and oestrous cycle phases on uterine SLC4A4 expression.
    Matched MeSH terms: Progesterone/pharmacology*
  20. Gholami K, Muniandy S, Salleh N
    J Biomed Biotechnol, 2012;2012:596084.
    PMID: 23226939 DOI: 10.1155/2012/596084
    Under progesterone (P) dominance, fluid loss assists uterine closure which is associated with pH reduction. We hypothesize that P inhibits uterine fluid secretion and HCO3⁻ transport.
    Matched MeSH terms: Progesterone/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links