Nodamura virus (NoV) B2, a suppressor of RNA interference, binds double stranded RNAs (dsRNAs) and small interfering RNAs (siRNAs) corresponding to Dicer substrates and products. Here, we report that the amino terminal domain of NoV B2 (NoV B2 79) specifically binds siRNAs but not dsRNAs. NoV B2 79 oligomerizes on binding to 27 nucleotide siRNA. Mutation of the residues phenylalanine49 and alanine60 to cysteine and methionine, respectively enhances the RNA binding affinity of NoV B2 79. Circular dichroism spectra demonstrated that the wild type and mutant NoV B2 79 have similar secondary structure conformations.
Upon the discovery of RNA interference (RNAi), canonical small interfering RNA (siRNA) has been recognized to trigger sequence-specific gene silencing. Despite the benefits of siRNAs as potential new drugs, there are obstacles still to be overcome, including off-target effects and immune stimulation. More recently, Dicer substrate siRNA (DsiRNA) has been introduced as an alternative to siRNA. Similarly, it also is proving to be potent and target-specific, while rendering less immune stimulation. DsiRNA is 25-30 nucleotides in length, and is further cleaved and processed by the Dicer enzyme. As with siRNA, it is crucial to design and develop a stable, safe, and efficient system for the delivery of DsiRNA into the cytoplasm of targeted cells. Several polymeric nanoparticle systems have been well established to load DsiRNA for in vitro and in vivo delivery, thereby overcoming a major hurdle in the therapeutic uses of DsiRNA. The present review focuses on a comparison of siRNA and DsiRNA on the basis of their design, mechanism, in vitro and in vivo delivery, and therapeutics.
Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4 sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis. We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or piRNA-like Sox4_sir3.
Stool specimens from 334 infants and young children hospitalized with diarrhea in the General Hospital, Kuala Lumpur, Malaysia between August and November, 1987 were analyzed for the presence of rotavirus double-stranded (ds) RNA by polyacrylamide gel electrophoresis. Of the 334 specimens analyzed, 32 (9.6%) were positive for rotavirus RNA. One specimen (designated G147) exhibited a ds RNA electropherotype profile characteristic of Group C rotavirus and was selected for further characterization. In Northern blot hybridization studies, the gene 5 segment of strain G147 hybridized with a cDNA probe generated from the cloned gene 5 (which encodes the VP6 inner capsid protein that is group specific) of porcine Group C rotavirus strain Cowden, confirming the classification of strain G147 in Group C. The association of Group C rotavirus with diarrheal illness in Malaysia is consistent with earlier studies that suggest a global distribution of this virus and supports the need for additional epidemiologic studies.
The R2R3-MYB genes regulate pigmentation and morphogenesis of flowers, including flower and cell shape, and therefore have importance in the development of new varieties of orchids. However, new variety development is limited by the long breeding time required in orchids. In this study, we identified a cDNA, DhMYB1, that is expressed during flower development in a hybrid orchid, Dendrobium hybrida (Dendrobium bobby messina X Dendrobium chao phraya) then used the direct application of dsRNA to observe the effect of gene silencing on flower phenotype and floral epidermal cell shape.
Four nucleic acid extraction protocols were examined for their suitability for extraction of the ssRNA, dsRNA and dsDNA genomes of gastroenteritis viruses, for PCR detection. Protocol (A), employed specimen lysis with guanidinium thiocyanate, extraction with phenol-chloroform-isoamyl alcohol and nucleic acid purification by size-fractionated silica particles. Protocol (B), utilised specimen lysis with guanidinium thiocyanate and nucleic acid purification by silica, followed by phenol-chloroform-isoamyl alcohol extraction. Protocol (C), employed specimen lysis with guanidinium thiocyanate and nucleic acid purification by RNAID glass powder. Protocol (D), employed specimen lysis with sodium dodecyl sulphate, proteinase K digestion and extraction with phenol-chloroform-isoamyl alcohol. Of the four protocols, (B) appeared to be a suitable candidate 'universal' nucleic acid extraction procedure for PCR detection of different viral agents of gastroenteritis in a single nucleic acid extract of a faecal specimen, irrespective of genome composition. Omission of the phenol-chloroform extraction step did not affect negatively the ability of protocol (B) to allow PCR detection of gastroenteritis viruses in faecal specimens. PCR detection of NLVs, astroviruses, rotaviruses and adenoviruses, in single nucleic acid extracts of faecal specimens obtained from the field, confirmed the universality of the modified protocol (B). We propose the modified protocol (B) as a 'universal' nucleic acid extraction procedure, for monoplex PCR detection of gastroenteritis viruses in single nucleic acid extracts of faecal specimens and for development of multiplex PCR for their simultaneous detection.
The risk of liver cancer in patients infected with the hepatitis B virus (HBV) and their clinical response to interferon alpha therapy vary based on the HBV genotype. The mechanisms underlying these differences in HBV pathogenesis remain unclear. In HepG2 cells transfected with a mutant HBV(G2335A) expression plasmid that does not transcribe the 2.2-kb doubly spliced RNA (2.2DS-RNA) expressed by wild-type HBV genotype A, the level of HBV pregenomic RNA (pgRNA) was higher than that in cells transfected with an HBV genotype A expression plasmid. By using cotransfection with HBV genotype D and 2.2DS-RNA expression plasmids, we found that a reduction of pgRNA was observed in the cells even in the presence of small amounts of the 2.2DS-RNA plasmid. Moreover, ectopic expression of 2.2DS-RNA in the HBV-producing cell line 1.3ES2 reduced the expression of pgRNA. Further analysis showed that exogenously transcribed 2.2DS-RNA inhibited a reconstituted transcription in vitro. In Huh7 cells ectopically expressing 2.2DS-RNA, RNA immunoprecipitation revealed that 2.2DS-RNA interacted with the TATA-binding protein (TBP) and that nucleotides 432 to 832 of 2.2DS-RNA were required for efficient TBP binding. Immunofluorescence experiments showed that 2.2DS-RNA colocalized with cytoplasmic TBP and the stress granule components, G3BP and poly(A)-binding protein 1 (PABP1), in Huh7 cells. In conclusion, our study reveals that 2.2DS-RNA acts as a repressor of HBV transcription through an interaction with TBP that induces stress granule formation. The expression of 2.2DS-RNA may be one of the viral factors involved in viral replication, which may underlie differences in clinical outcomes of liver disease and responses to interferon alpha therapy between patients infected with different HBV genotypes.