Displaying all 11 publications

Abstract:
Sort:
  1. Anarjan N, Nehdi IA, Sbihi HM, Al-Resayes SI, Malmiri HJ, Tan CP
    Molecules, 2014 Sep 10;19(9):14257-65.
    PMID: 25211006 DOI: 10.3390/molecules190914257
    The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid) in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose oleate as a small molecular emulsifier, sodium caseinate (SC) as a protein and gum Arabic as a polysaccharide were used as stabilizer systems in the formation of astaxanthin nanodispersions via an emulsification-evaporation process. The results indicated that the addition of SC to gelatin in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to production of nanodispersions with the smallest particle size (121.4±8.6 nm). It was also shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin nanodispersions in terms of physical stability (minimum polydispersity index (PDI) and maximum zeta-potential). This study demonstrated that the mixture of surface active compounds showed higher emulsifying and stabilizing functionality compared to using them individually in the preparation of astaxanthin nanodispersions.
    Matched MeSH terms: Xanthophylls/chemistry
  2. Anarjan N, Jafarizadeh-Malmiri H, Nehdi IA, Sbihi HM, Al-Resayes SI, Tan CP
    Int J Nanomedicine, 2015;10:1109-18.
    PMID: 25709435 DOI: 10.2147/IJN.S72835
    Nanodispersion systems allow incorporation of lipophilic bioactives, such as astaxanthin (a fat soluble carotenoid) into aqueous systems, which can improve their solubility, bioavailability, and stability, and widen their uses in water-based pharmaceutical and food products. In this study, response surface methodology was used to investigate the influences of homogenization time (0.5-20 minutes) and speed (1,000-9,000 rpm) in the formation of astaxanthin nanodispersions via the solvent-diffusion process. The product was characterized for particle size and astaxanthin concentration using laser diffraction particle size analysis and high performance liquid chromatography, respectively. Relatively high determination coefficients (ranging from 0.896 to 0.969) were obtained for all suggested polynomial regression models. The overall optimal homogenization conditions were determined by multiple response optimization analysis to be 6,000 rpm for 7 minutes. In vitro cellular uptake of astaxanthin from the suggested individual and multiple optimized astaxanthin nanodispersions was also evaluated. The cellular uptake of astaxanthin was found to be considerably increased (by more than five times) as it became incorporated into optimum nanodispersion systems. The lack of a significant difference between predicted and experimental values confirms the suitability of the regression equations connecting the response variables studied to the independent parameters.
    Matched MeSH terms: Xanthophylls/chemistry
  3. Anarjan N, Tan CP, Nehdi IA, Ling TC
    Food Chem, 2012 Dec 1;135(3):1303-9.
    PMID: 22953858 DOI: 10.1016/j.foodchem.2012.05.091
    Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (p<0.05) higher cellular uptake than pure astaxanthin powder.
    Matched MeSH terms: Xanthophylls/chemistry
  4. Anarjan N, Tan CP, Ling TC, Lye KL, Malmiri HJ, Nehdi IA, et al.
    J Agric Food Chem, 2011 Aug 24;59(16):8733-41.
    PMID: 21726079 DOI: 10.1021/jf201314u
    A simplex centroid mixture design was used to study the interactions between two chosen solvents, dichloromethane (DCM) and acetone (ACT), as organic-phase components in the formation and physicochemical characterization and cellular uptake of astaxanthin nanodispersions produced using precipitation and condensation processes. Full cubic or quadratic regression models with acceptable determination coefficients were obtained for all of the studied responses. Multiple-response optimization predicted that the organic phase with 38% (w/w) DCM and 62% (w/w) ACT yielded astaxanthin nanodispersions with the minimum particle size (106 nm), polydispersity index (0.191), and total astaxanthin loss (12.7%, w/w) and the maximum cellular uptake (2981 fmol/cell). Astaxanthin cellular uptake from the produced nanodispersions also showed a good correlation with their particle size distributions and astaxanthin trans/cis isomerization ratios. The absence of significant (p > 0.05) differences between the experimental and predicted values of the response variables confirmed the adequacy of the fitted models.
    Matched MeSH terms: Xanthophylls/chemistry
  5. Anarjan N, Tan CP
    Molecules, 2013 Jan 09;18(1):768-77.
    PMID: 23303336 DOI: 10.3390/molecules18010768
    The effects of selected nonionic emulsifiers on the physicochemical characteristics of astaxanthin nanodispersions produced by an emulsification/evaporation technique were studied. The emulsifiers used were polysorbates (Polysorbate 20, Polysorbate 40, Polysorbate 60 and Polysorbate 80) and sucrose esters of fatty acids (sucrose laurate, palmitate, stearate and oleate). The mean particle diameters of the nanodispersions ranged from 70 nm to 150 nm, depending on the emulsifier used. In the prepared nanodispersions, the astaxanthin particle diameter decreased with increasing emulsifier hydrophilicity and decreasing carbon number of the fatty acid in the emulsifier structure. Astaxanthin nanodispersions with the smallest particle diameters were produced with Polysorbate 20 and sucrose laurate among the polysorbates and the sucrose esters, respectively. We also found that the Polysorbate 80- and sucrose oleate-stabilized nanodispersions had the highest astaxanthin losses (i.e., the lowest astaxanthin contents in the final products) among the nanodispersions. This work demonstrated the importance of emulsifier type in determining the physicochemical characteristics of astaxanthin nano-dispersions.
    Matched MeSH terms: Xanthophylls/chemistry
  6. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al.
    J Biotechnol, 2017 Jan 10;241:175-183.
    PMID: 27914891 DOI: 10.1016/j.jbiotec.2016.11.026
    Natural antioxidants from sustainable sources are favoured to accommodate worldwide antioxidant demand. In addition to bioprospecting for natural and sustainable antioxidant sources, this study aimed to investigate the relationship between the bioactives (i.e. carotenoid and phenolic acids) and the antioxidant capacities in fucoxanthin-producing algae. Total carotenoid, phenolic acid, fucoxanthin contents and fatty acid profile of six species of algae (five microalgae and one macroalga) were quantified followed by bioactivity evaluation using four antioxidant assays. Chaetoceros calcitrans and Isochrysis galbana displayed the highest antioxidant activity, followed by Odontella sinensis and Skeletonema costatum which showed moderate bioactivities. Phaeodactylum tricornutum and Saccharina japonica exhibited the least antioxidant activities amongst the algae species examined. Pearson correlation and multiple linear regression showed that both carotenoids and phenolic acids were significantly correlated (p<0.05) with the antioxidant activities, indicating the influence of these bioactives on the algal antioxidant capacities.
    Matched MeSH terms: Xanthophylls/chemistry
  7. Chu WL, Phang SM
    Mar Drugs, 2016 Dec 07;14(12).
    PMID: 27941599 DOI: 10.3390/md14120222
    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
    Matched MeSH terms: Xanthophylls/chemistry
  8. Zaharudin N, Staerk D, Dragsted LO
    Food Chem, 2019 Jan 01;270:481-486.
    PMID: 30174076 DOI: 10.1016/j.foodchem.2018.07.142
    A 5 mg/mL solution of water, methanol and acetone extracts of seaweeds were used for α-glucosidase inhibition assay hyphenated with high performance liquid chromatography-mass spectrometry (HPLC-HRMS). The results showed acetone extracts of Undaria pinnatifida has the strongest inhibitory effect against α-glucosidase activity with IC50 0.08 ± 0.002 mg/mL. The active compound found in Undaria pinnatifida was identified as fucoxanthin. Analytical standard sample of fucoxanthin significantly inhibited α-glucosidase with IC50 value 0.047 ± 0.001 mg/mL. An inhibition kinetics study indicates that fucoxanthin is showing mixed-type inhibition. These results suggest that Undaria pinnatifida has a potential to inhibit α-glucosidase and may be used as a bioactive food ingredient for glycaemic control.
    Matched MeSH terms: Xanthophylls/chemistry
  9. Raman R, Mohamad SE
    Pak J Biol Sci, 2012 Dec 15;15(24):1182-6.
    PMID: 23755409
    There are numerous commercial applications of microalgae nowadays owing to their vast biotechnological and economical potential. Indisputably, astaxanthin is one of the high value product synthesized by microalgae and is achieving commercial success. Astaxanthin is a keto-carotenoid pigment found in many aquatic animals including microalgae. Astaxanthin cannot be synthesized by animals and provided in the diet is compulsory. In this study, the production of astaxanthin by the freshwater microalgae Chlorella sorokiniana and marine microalgae Tetraselmis sp. were studied. The relationship between growth and astaxanthin production by marine and freshwater microalgae cultivated under various carbon sources and concentrations, environmental conditions and nitrate concentrations was investigated in this study. Inorganic carbon source and low nitrate concentration favored the growth and production of astaxanthin by the marine microalgae Tetraselmis sp. and the freshwater microalgae Chlorella sorokiniana. Outdoor cultivation enhanced the growth of microalgae, while indoor cultivation promoted the formation of astaxanthin. The results indicated that supplementation of light, inorganic carbon and nitrate could be effectively manipulated to enhance the production of astaxanthin by both microalgae studied.
    Matched MeSH terms: Xanthophylls/chemistry
  10. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG
    Mar Drugs, 2014 Jan 07;12(1):128-52.
    PMID: 24402174 DOI: 10.3390/md12010128
    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.
    Matched MeSH terms: Xanthophylls/chemistry
  11. Agatonovic-Kustrin S, Morton DW
    J Chromatogr A, 2017 Dec 29;1530:197-203.
    PMID: 29157606 DOI: 10.1016/j.chroma.2017.11.024
    High-Performance Thin-layer chromatography (HPTLC) combined with DPPH free radical method and α-amylase bioassay was used to compare antioxidant and antidiabetic activities in ethanol and ethyl acetate extracts from 10 marine macroalgae species (3 Chlorophyta, 4 Phaeophyta and 3 Rhodophyta) from Blue Lagoon beach (Malaysia). Samples were also evaluated for their phenolic and stigmasterol content. On average, higher antioxidant activity was observed in the ethyl acetate extracts (55.1mg/100g gallic acid equivalents (GAE) compared to 35.0mg/100g GAE) while, as expected, phenolic content was higher in ethanol extracts (330.5mg/100g GAE compared to 289.5mg/100g GAE). Amounts of fucoxanthin, stigmasterol and α-amylase inhibitory activities were higher in ethyl acetate extracts. Higher enzyme inhibition is therefore related to higher concentrations of triterpenes and phytosterols (Note: these compounds are more soluble in ethyl acetate). Ethyl acetate extracts from Caulerpa racemosa and Padina minor, had the highest α-amylase inhibitory activity, and also showed moderately high antioxidant activities, stigmasterol content and polyphenolic content. Caulerpa racemose, being green algae, does not contain fucoxanthin, while Padina minor, being brown algae, contains high amounts of fucoxanthin. Therefore, it is very unlikely that fucoxanthin contributes to α-amylase inhibitory activity as previously reported.
    Matched MeSH terms: Xanthophylls/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links