METHODS AND FINDINGS: The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI) measurements to create four metabolic health/body size phenotype categories: (1) metabolically healthy/normal weight (BMI < 25 kg/m2), (2) metabolically healthy/overweight (BMI ≥ 25 kg/m2), (3) metabolically unhealthy/normal weight (BMI < 25 kg/m2), and (4) metabolically unhealthy/overweight (BMI ≥ 25 kg/m2). Additionally, in separate models, waist circumference measurements (using the International Diabetes Federation cut-points [≥80 cm for women and ≥94 cm for men]) were used (instead of BMI) to create the four metabolic health/body size phenotype categories. Statistical tests used in the analysis were all two-sided, and a p-value of <0.05 was considered statistically significant. In multivariable-adjusted conditional logistic regression models with BMI used to define adiposity, compared with metabolically healthy/normal weight individuals, we observed a higher colorectal cancer risk among metabolically unhealthy/normal weight (odds ratio [OR] = 1.59, 95% CI 1.10-2.28) and metabolically unhealthy/overweight (OR = 1.40, 95% CI 1.01-1.94) participants, but not among metabolically healthy/overweight individuals (OR = 0.96, 95% CI 0.65-1.42). Among the overweight individuals, lower colorectal cancer risk was observed for metabolically healthy/overweight individuals compared with metabolically unhealthy/overweight individuals (OR = 0.69, 95% CI 0.49-0.96). These associations were generally consistent when waist circumference was used as the measure of adiposity. To our knowledge, there is no universally accepted clinical definition for using C-peptide level as an indication of hyperinsulinaemia. Therefore, a possible limitation of our analysis was that the classification of individuals as being hyperinsulinaemic-based on their C-peptide level-was arbitrary. However, when we used quartiles or the median of C-peptide, instead of tertiles, as the cut-point of hyperinsulinaemia, a similar pattern of associations was observed.
CONCLUSIONS: These results support the idea that individuals with the metabolically healthy/overweight phenotype (with normal insulin levels) are at lower colorectal cancer risk than those with hyperinsulinaemia. The combination of anthropometric measures with metabolic parameters, such as C-peptide, may be useful for defining strata of the population at greater risk of colorectal cancer.
METHODS: A computer-based SG (CBSG) tool was developed using Microsoft® PowerPoint 2007 to value asthma-specific health states in Malaysia. Eight hypothetical health states were considered, including two anchor states (healthy and dead), three chronic (C) states and three temporary (T) states (each numbered 1 through 3, with increasing severity) in addition to the subject's current health state. Twenty adult asthma patients completed the CBSG tool in addition to paper-based Asthma Control Test, three health status measures (EQ-5D, EQ-VAS, and Mini Asthma Quality of Life Questionnaire (MiniAQLQ)), and VAS utility assessment tool. Patients and interviewers rated the difficulty of the VAS and CBSG tools. Correlations between current health state values derived from the various measures were determined.
RESULTS: The SG and the VAS received similar difficulty ratings. 17 patients completed the CBSG tool within 30 minutes. The mean utilities determined by the CBSG tool for the T1-T3 asthma health states met the expected logical order of 1>2>3, but those for the C1-C3 states did not. Correlation between current health state values derived from the CBSG tool and other measurement tools was poor.
CONCLUSION: The CBSG tool developed for measuring utilities of asthma health states showed acceptable feasibility and overall validity.