Browse publications by year: 2021

  1. Saman NM, Zakaria IH, Ahmad MH, Abdul-Malek Z
    Materials (Basel), 2021 Jun 28;14(13).
    PMID: 34203364 DOI: 10.3390/ma14133610
    Mineral oil has been chosen as an insulating liquid in power transformers due to its superior characteristics, such as being an effective insulation medium and a great cooling agent. Meanwhile, the performance of mineral oil as an insulation liquid can be further enhanced by dispersing nanoparticles into the mineral oil, and this composition is called nanofluids. However, the incorporation of nanoparticles into the mineral oil conventionally causes the nanoparticles to agglomerate and settle as sediment in the base fluid, thereby limiting the improvement of the insulation properties. In addition, limited studies have been reported for the transformer oil as a base fluid using Aluminum Oxide (Al2O3) as nanoparticles. Hence, this paper reported an experimental study to investigate the significant role of cold plasma treatment in modifying and treating the surface of nano-alumina to obtain a better interaction between the nano-alumina and the base fluid, consequently improving the insulation characteristics such as breakdown voltage, partial discharge characteristics, thermal conductivity, and viscosity of the nanofluids. The plasma treatment process was conducted on the surface of nano-alumina under atmospheric pressure plasma by using the dielectric barrier discharge concept. The breakdown strength and partial discharge characteristics of the nanofluids were measured according to IEC 60156 and IEC 60270 standards, respectively. In contrast, the viscosity and thermal conductivity of the nanofluids were determined using Brookfield DV-II + Pro Automated viscometer and Decagon KD2-Pro conductivity meter, respectively. The results indicate that the 0.1 wt% of plasma-treated alumina nanofluids has shown the most comprehensive improvements in electrical properties, dispersion stability, and thermal properties. Therefore, the plasma treatment has improved the nanoparticles dispersion and stability in nanofluids by providing stronger interactions between the mineral oil and the nanoparticles.
  2. Al-Ezzi A, Kamel N, Faye I, Gunaseli E
    Sensors (Basel), 2021 Jun 15;21(12).
    PMID: 34203578 DOI: 10.3390/s21124098
    Recent brain imaging findings by using different methods (e.g., fMRI and PET) have suggested that social anxiety disorder (SAD) is correlated with alterations in regional or network-level brain function. However, due to many limitations associated with these methods, such as poor temporal resolution and limited number of samples per second, neuroscientists could not quantify the fast dynamic connectivity of causal information networks in SAD. In this study, SAD-related changes in brain connections within the default mode network (DMN) were investigated using eight electroencephalographic (EEG) regions of interest. Partial directed coherence (PDC) was used to assess the causal influences of DMN regions on each other and indicate the changes in the DMN effective network related to SAD severity. The DMN is a large-scale brain network basically composed of the mesial prefrontal cortex (mPFC), posterior cingulate cortex (PCC)/precuneus, and lateral parietal cortex (LPC). The EEG data were collected from 88 subjects (22 control, 22 mild, 22 moderate, 22 severe) and used to estimate the effective connectivity between DMN regions at different frequency bands: delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), low beta (13-21 Hz), and high beta (22-30 Hz). Among the healthy control (HC) and the three considered levels of severity of SAD, the results indicated a higher level of causal interactions for the mild and moderate SAD groups than for the severe and HC groups. Between the control and the severe SAD groups, the results indicated a higher level of causal connections for the control throughout all the DMN regions. We found significant increases in the mean PDC in the delta (p = 0.009) and alpha (p = 0.001) bands between the SAD groups. Among the DMN regions, the precuneus exhibited a higher level of causal influence than other regions. Therefore, it was suggested to be a major source hub that contributes to the mental exploration and emotional content of SAD. In contrast to the severe group, HC exhibited higher resting-state connectivity at the mPFC, providing evidence for mPFC dysfunction in the severe SAD group. Furthermore, the total Social Interaction Anxiety Scale (SIAS) was positively correlated with the mean values of the PDC of the severe SAD group, r (22) = 0.576, p = 0.006 and negatively correlated with those of the HC group, r (22) = -0.689, p = 0.001. The reported results may facilitate greater comprehension of the underlying potential SAD neural biomarkers and can be used to characterize possible targets for further medication.
    MeSH terms: Brain; Brain Mapping; Electroencephalography; Humans; Magnetic Resonance Imaging; Nerve Net; Phobia, Social*
  3. Senevirathna SSJ, Ramli NS, Azman EM, Juhari NH, Karim R
    Foods, 2021 Jun 15;10(6).
    PMID: 34203622 DOI: 10.3390/foods10061378
    Purple sweet potato (PSP) is a rich source of anthocyanins, but the anthocyanin content and color can be affected by the drying method and processing condition. Response surface methodology (RSM) with a Box-Behnken design (BBD) was used to investigate the effects of citric acid (CA) concentration, steam pressure (SP) and rotation speed (DS) on the physicochemical and functional properties of drum-dried purple sweet potato powder (PSPP). The anthocyanins of the PSPP were analyzed using mass spectrometry with electrospray ionization and twelve anthocyanins were identified. The results indicated that the moisture content (4.80 ± 0.17-9.97 ± 0.03%) and water activity (0.290 ± 0.004-0.47 ± 0.001) (p < 0.05) decreased with increasing drum temperature as well as with reduced drum rotating speed. CA had a significant (p < 0.05) effect on the color and total anthocyanin content (101.83 ± 2.20-124.09 ± 2.89 mg/100 g) of the PSPP. High SP and low DS negatively affected the antioxidant properties of the PSPP. DPPH value of the PSPP ranged from 20.41 ± 0.79 to 30.79 ± 1.00 μmol TE/g. The optimal parameters were achieved at 0.59% CA, 499.8 kPa SP and 3 rpm DS.
  4. Amirudin A, Urbański M, Saputra J, Johansyah MD, Latip L, Tarmizi A, et al.
    Int J Environ Res Public Health, 2021 Jun 15;18(12).
    PMID: 34203631 DOI: 10.3390/ijerph18126452
    Today, the spread of the Coronavirus 2019 (COVID-19) pandemic continues to impact on world public health and bring about considerable human suffering partly due to government policies on reducing the spread. COVID-19 has significantly affected human health and it has impacted on the occupation of vulnerable groups such as tour guides, drivers and shop assistants. Of these, the present study aims to investigate the impact of the COVID-19 self-isolation policy on the occupation of vulnerable groups in Semarang City, Indonesia. To achieve this objective, this study uses a qualitative method with an ethnography approach considering a rational or non-rational thinking model. The binary opposition thinking pattern pioneered by Lévi-Strauss was used in the interview process with 25 informants in Semarang City, Indonesia. The data analyzed the response pattern of informants through the taxonomy analysis. Three levels of vulnerability among groups relating to occupation were identified; jobs lost, income decreased, and delayed salary. The result of the analysis found that the group who obeyed self-isolation was categorized as a rational thinking; these groups stay at home, do not go to work, and have no income. Besides that, the group who ignored self-isolation is categorized as non-rational thinking; they work, as usual, get their salary, and believe that the COVID-19 pandemic is a disaster and they pray for their safety to God. In conclusion, COVID-19 brings a significant impact on occupation in the forms of postponing, declining, and missing income besides the health effects among vulnerable groups in Semarang city, Indonesia. In avoiding COVID-19 infection, the circumstances of vulnerable groups are worse when self-isolation is required. Thus, this study suggests that the government needs to assist vulnerable groups by focusing on strategic policies, such as strategies for survival, providing access to basic needs, including health, and offering livelihood plans by providing access to medical services and other source of income.
    MeSH terms: Humans; Indonesia; Occupations; Policy; Pandemics*
  5. Hatta MNA, Mohamad Hanif EA, Chin SF, Neoh HM
    Biology (Basel), 2021 Jun 15;10(6).
    PMID: 34203649 DOI: 10.3390/biology10060533
    Cancer is a global health problem associated with genetics and unhealthy lifestyles. Increasingly, pathogenic infections have also been identified as contributors to human cancer initiation and progression. Most pathogens (bacteria, viruses, fungi, and parasites) associated with human cancers are categorized as Group I human carcinogens by the International Agency for Research on Cancer, IARC. These pathogens cause carcinogenesis via three known mechanisms: persistent infection that cause inflammation and DNA damage, initiation of oncogene expression, and immunosuppression activity of the host. In this review, we discuss the carcinogenesis mechanism of ten pathogens, their implications, and some future considerations for better management of the disease. The pathogens and cancers described are Helicobacter pylori (gastric cancer), Epstein-Barr virus (gastric cancer and lymphoma), Hepatitis B and C viruses (liver cancer), Aspergillus spp. (liver cancer), Opisthorchis viverrine (bile duct cancer), Clonorchis sinensis (bile duct cancer), Fusobacterium nucleatum (colorectal cancer), Schistosoma haematobium (bladder cancer); Human Papillomavirus (cervical cancer), and Kaposi's Sarcoma Herpes Virus (Kaposi's sarcoma).
  6. Hasan M, Ahmad-Hamdani MS, Rosli AM, Hamdan H
    Plants (Basel), 2021 Jun 15;10(6).
    PMID: 34203650 DOI: 10.3390/plants10061212
    Weed management is an arduous undertaking in crop production. Integrated weed management, inclusive of the application of bioherbicides, is an emerging weed control strategy toward sustainable agriculture. In general, bioherbicides are derived either from plants containing phytotoxic allelochemicals or certain disease-carrying microbes that can suppress weed populations. While bioherbicides have exhibited great promise in deterring weed seed germination and growth, only a few in vitro studies have been conducted on the physiological responses they evoke in weeds. This review discusses bioherbicide products that are currently available on the market, bioherbicide impact on weed physiology, and potential factors influencing bioherbicide efficacy. A new promising bioherbicide product is introduced at the end of this paper. When absorbed, phytotoxic plant extracts or metabolites disrupt cell membrane integrity and important biochemical processes in weeds. The phytotoxic impact on weed growth is reflected in low levels of root cell division, nutrient absorption, and growth hormone and pigment synthesis, as well as in the development of reactive oxygen species (ROS), stress-related hormones, and abnormal antioxidant activity. The inconsistency of bioherbicide efficacy is a primary factor restricting their widespread use, which is influenced by factors such as bioactive compound content, weed control spectrum, formulation, and application method.
  7. Kamaruddin M, Mohd Matore MEE
    Int J Environ Res Public Health, 2021 Jun 15;18(12).
    PMID: 34203683 DOI: 10.3390/ijerph18126455
    BACKGROUND: The International Baccalaureate Middle Years Programme (IBMYP) aims to produce a holistic transformation with creative and critically minded students. However, very little attention has been paid to the development of an instrument to measure the IB learner profile with good psychometric properties.

    PURPOSE: This study aims to develop an instrument with good psychometric properties, based on the Rasch measurement model and confirmatory factor analysis.

    METHODS: The study consists of two phases of pilot and field studies involving 597 year four students from IBWS MOE.

    RESULTS: The findings from the Rasch measurement model analysis have shown that 54 items meet the criteria of the item fit, unidimensionality, and reliability index. Meanwhile, confirmatory factor analysis found that 44 items have shown a valid item fit index.

    CONCLUSIONS: The combination of both analyses has shown the strength of 10IBLP-I psychometric properties that cover the aspects of validity and reliability. The findings also provide an implication to the theory, with empirical evidence that the IB learner profile consists of 10 constructs. Besides, the evidenced 10IBLP-I comprises good psychometric properties, which can be used to measure the level of IB learner profile among IBWS MOE students to assess the effectiveness of the implementation of IBMYP in Malaysia.

  8. Kumari S, Phogat D, Sehrawat KD, Choudhary R, Rajput VD, Ahlawat J, et al.
    Plants (Basel), 2021 Jun 15;10(6).
    PMID: 34203887 DOI: 10.3390/plants10061216
    Mung bean (Vigna radiata L.) sprout is a popular fresh vegetable, tasty and high in antioxidants. To increase yield and quality after the occurrence of both abiotic and biotic stresses, the application of seaweed extracts is of great importance. Hence, this study was conducted to determine the effect of Ascophyllum nodosum extract (ANE) in the presence of salt on the antioxidant potential of V. radiata sprouts. Different concentrations of ANE viz. 0.00, 0.01, 0.05, 0.10, and 0.50% and NaCl 0, 25, 50, 75, and 100 mM alone and in combinations were tested for researching the antioxidant potential of V. radiata sprouts at 0, 24, and 36 h of sprouting. The DPPH free-radical-scavenging activity of sprouts of V. radiata was found to increase with time and peaked at 24 h of treatment. The A. nodosum extract (0.01%) could reverse the ill effect of the low level of salinity posed by up to 25 mM NaCl. The increasing salinity deteriorated the antioxidant activity using ABTS method of sprouts down to 20.45% of the control at 100 mM NaCl. The total phenolic content (TPC), total flavonoid content (TFC), and reducing power of V. radiata sprouts was found to increase till 36 h of sprouting. A slight increase in TPC, TFC and reducing power was observed when seeds were treated with low concentrations of ANE. The elevation in TPC, TFC and reducing power upon treatment with low concentrations of ANE was also noticed in sprouts in saline combinations. Alpha amylase inhibition activity was found to reach a (67.16% ± 0.9) maximum at 24 h of sprouting at a 0.01% concentration of ANE. Tyrosinase inhibition and alpha glucosidase inhibition was 88.0% ± 2.11 and 84.92% ± 1.2 at 36 h of sprouting, respectively, at 0.01% concentration of ANE. A. nodosum extract is natural, environmentally friendly, and safe, and could be used as one of the strategies to decline stress at a low level and enhance the antioxidant activities in V. radiata sprouts, thus increasing its potential to be developed as an antioxidant-based functional food.
  9. Mussa MH, Radzi NAM, Hamid R, Mutalib AA
    Materials (Basel), 2021 Jun 15;14(12).
    PMID: 34203973 DOI: 10.3390/ma14123311
    The study aims to investigate the fire performance of reinforced concrete (RC) slab fabricated from high volume fly ash inclusion with nano-silica (HVFANS) under ISO 834 load curve. The HVFANS concrete slab with dimensions of 1850 mm × 1700 mm × 200 mm was tested via an electrical furnace under an exposing temperature of 1100 °C for 120 min. The slab behaviour was evaluated in terms of residual compressive strength, temperature distribution along its thickness, spalling, and cracks. The results revealed that the slab was capable of maintaining 62.19% of its original compressive strength at room temperature after exposure to the above temperature. Moreover, the distribution of temperature revealed that the temperature of concrete cover and bottom reinforcement was less than 300 °C with a maximum spalling depth of 11 mm within the temperature range of 680 to 840 °C. Furthermore, the thermal conductivity index (K) of the HVFANS concrete was determined, and results indicated that thermal conductivity equalled 0.35 W/mK which is considered low, as compared with other concretes tested in current and previous studies.
  10. Low KO, Johar M, Israr HA, Gan KW, Rahimian Koloor SS, Petrů M, et al.
    Polymers (Basel), 2021 Jun 06;13(11).
    PMID: 34204033 DOI: 10.3390/polym13111881
    This paper studies the influence of displacement rate on mode II delamination of unidirectional carbon/epoxy composites. End-notched flexure test is performed at displacement rates of 1, 10, 100 and 500 mm/min. Experimental results reveal that the mode II fracture toughness GIIC increases with the displacement, with a maximum increment of 45% at 100 mm/min. In addition, scanning electron micrographs depict that fiber/matrix interface debonding is the major damage mechanism at 1 mm/min. At higher speeds, significant matrix-dominated shear cusps are observed contributing to higher GIIC. Besides, it is demonstrated that the proposed rate-dependent model is able to fit the experimental data from the current study and the open literature generally well. The mode II fracture toughness measured from the experiment or deduced from the proposed model can be used in the cohesive element model to predict failure. Good agreement is found between the experimental and numerical results, with a maximum difference of 10%. The numerical analyses indicate crack jump occurs suddenly after the peak load is attained, which leads to the unstable crack propagation seen in the experiment.
  11. Jamari J, Ammarullah MI, Saad APM, Syahrom A, Uddin M, van der Heide E, et al.
    J Funct Biomater, 2021 Jun 06;12(2).
    PMID: 34204138 DOI: 10.3390/jfb12020038
    Wear and wear-induced debris is a significant factor in causing failure in implants. Reducing contact pressure by using a textured surface between the femoral head and acetabular cup is crucial to improving the implant's life. This study presented the effect of surface texturing as dimples on the wear evolution of total hip arthroplasty. It was implemented by developing finite element analysis from the prediction model without dimples and with bottom profile dimples of flat, drill, and ball types. Simulations were carried out by performing 3D physiological loading of the hip joint under normal walking conditions. A geometry update was initiated based on the patient's daily routine activities. Our results showed that the addition of dimples reduced contact pressure and wear. The bottom profile dimples of the ball type had the best ability to reduce wear relative to the other types, reducing cumulative linear wear by 24.3% and cumulative volumetric wear by 31% compared to no dimples. The findings demonstrated that surface texturing with appropriate dimple bottom geometry on a bearing surface is able to extend the lifetime of hip implants.
  12. Manzoor B, Othman I, Pomares JC
    PMID: 34204147 DOI: 10.3390/ijerph18116135
    Digital technologies (DTs) are proven helpful in the Architecture, Engineering and Construction (AEC) industry due to their varied benefits to project stakeholders, such as enhanced visualization, better data sharing, reduction in building waste, increased productivity, sustainable performance and safety improvement. Therefore, researchers have conducted various studies on DTs in the AEC industry over the year; however, this study explores the state-of-the-art research on DTs in the AEC industry by means of a bibliometric-qualitative review method. This research would uncover new knowledge gaps and practical needs in the domain of DTs in the AEC industry. In addition, bibliometric analysis was carried out by utilizing academic publications from Scopus (i.e., 11,047 publications for the AEC industry, 1956 for DTs and 1778 for DTs in the AEC industry). Furthermore, a qualitative review was further conducted on 200 screened selected research publications in the domain of DTs. This study brings attention to the body of knowledge by envisioning trends and patterns by defining key research interests, journals, countries, new advancements, challenges, negative attitudes and future directions towards DTs in the AEC industry. However, this study is the first in its vital importance and uniqueness by providing a broad updated review of DTs in the AEC literature. Furthermore, this research laid a foundation for future researchers, policy makers and practitioners to explore the limitations in future research.
    MeSH terms: Engineering; Research; Bibliometrics; Construction Industry*
  13. Subramaniam T, Fauzi MB, Lokanathan Y, Law JX
    Int J Mol Sci, 2021 Jun 17;22(12).
    PMID: 34204292 DOI: 10.3390/ijms22126486
    Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.
    MeSH terms: Theranostic Nanomedicine; Animals; Bandages; Calcium/metabolism*; Calcium/pharmacology; Calcium, Dietary/administration & dosage; Fibroblasts/metabolism; Humans; Regeneration; Skin/injuries; Skin/metabolism; Wound Healing/drug effects; Wound Healing/physiology*; Keratinocytes/metabolism; Neovascularization, Physiologic; Tissue Engineering; Nanoparticles/chemistry; Tissue Scaffolds
  14. Goh YS, Karunakaran T, Murugaiyah V, Santhanam R, Abu Bakar MH, Ramanathan S
    Molecules, 2021 Jun 17;26(12).
    PMID: 34204457 DOI: 10.3390/molecules26123704
    Mitragyna speciosa Korth (kratom) is known for its psychoactive and analgesic properties. Mitragynine is the primary constituent present in kratom leaves. This study highlights the utilisation of the green accelerated solvent extraction technique to produce a better, non-toxic and antinociceptive active botanical extract of kratom. ASE M. speciosa extract had a dry yield (0.53-2.91 g) and showed a constant mitragynine content (6.53-7.19%) when extracted with organic solvents of different polarities. It only requires a shorter extraction time (5 min) and a reduced amount of solvents (less than 100 mL). A substantial amount of total phenolic (407.83 ± 2.50 GAE mg/g and flavonoids (194.00 ± 5.00 QE mg/g) were found in ASE kratom ethanol extract. The MTT test indicated that the ASE kratom ethanolic leaf extract is non-cytotoxic towards HEK-293 and HeLa Chang liver cells. In mice, ASE kratom ethanolic extract (200 mg/kg) demonstrated a better antinociceptive effect compared to methanol and ethyl acetate leaf extracts. The presence of bioactive indole alkaloids and flavonols such as mitragynine, paynantheine, quercetin, and rutin in ASE kratom ethanolic leaf extract was detected using UHPLC-ESI-QTOF-MS/MS analysis supports its antinociceptive properties. ASE ethanolic leaf extract offers a better, safe, and cost-effective choice of test botanical extract for further preclinical studies.
    MeSH terms: Animals; HeLa Cells; Humans; Male; Plant Extracts/isolation & purification; Plant Extracts/chemistry*; Solvents/chemistry; Plant Leaves/chemistry; Mitragyna/metabolism; Mitragyna/chemistry*; Secologanin Tryptamine Alkaloids/isolation & purification*; Secologanin Tryptamine Alkaloids/chemistry; Mice; HEK293 Cells
  15. Abdani SR, Zulkifley MA, Zulkifley NH
    Diagnostics (Basel), 2021 Jun 17;11(6).
    PMID: 34204479 DOI: 10.3390/diagnostics11061104
    Pterygium is an eye condition that is prevalent among workers that are frequently exposed to sunlight radiation. However, most of them are not aware of this condition, which motivates many volunteers to set up health awareness booths to give them free health screening. As a result, a screening tool that can be operated on various platforms is needed to support the automated pterygium assessment. One of the crucial functions of this assessment is to extract the infected regions, which directly correlates with the severity levels. Hence, Group-PPM-Net is proposed by integrating a spatial pyramid pooling module (PPM) and group convolution to the deep learning segmentation network. The system uses a standard mobile phone camera input, which is then fed to a modified encoder-decoder convolutional neural network, inspired by a Fully Convolutional Dense Network that consists of a total of 11 dense blocks. A PPM is integrated into the network because of its multi-scale capability, which is useful for multi-scale tissue extraction. The shape of the tissues remains relatively constant, but the size will differ according to the severity levels. Moreover, group and shuffle convolution modules are also integrated at the decoder side of Group-PPM-Net by placing them at the starting layer of each dense block. The addition of these modules allows better correlation among the filters in each group, while the shuffle process increases channel variation that the filters can learn from. The results show that the proposed method obtains mean accuracy, mean intersection over union, Hausdorff distance, and Jaccard index performances of 0.9330, 0.8640, 11.5474, and 0.7966, respectively.
  16. Basik AA, Sanglier JJ, Yeo CT, Sudesh K
    Polymers (Basel), 2021 Jun 17;13(12).
    PMID: 34204568 DOI: 10.3390/polym13121989
    Rubber is an essential part of our daily lives with thousands of rubber-based products being made and used. Natural rubber undergoes chemical processes and structural modifications, while synthetic rubber, mainly synthetized from petroleum by-products are difficult to degrade safely and sustainably. The most prominent group of biological rubber degraders are Actinobacteria. Rubber degrading Actinobacteria contain rubber degrading genes or rubber oxygenase known as latex clearing protein (lcp). Rubber is a polymer consisting of isoprene, each containing one double bond. The degradation of rubber first takes place when lcp enzyme cleaves the isoprene double bond, breaking them down into the sole carbon and energy source to be utilized by the bacteria. Actinobacteria grow in diverse environments, and lcp gene containing strains have been detected from various sources including soil, water, human, animal, and plant samples. This review entails the occurrence, physiology, biochemistry, and molecular characteristics of Actinobacteria with respect to its rubber degrading ability, and discusses possible technological applications based on the activity of Actinobacteria for treating rubber waste in a more environmentally responsible manner.
  17. Thien VY, Rodrigues KF, Voo CLY, Wong CMVL, Yong WTL
    Plants (Basel), 2021 Jun 17;10(6).
    PMID: 34204578 DOI: 10.3390/plants10061236
    Rhodophyta (red algae) comprises over 6000 species, however, there have only been a few comparative transcriptomic studies due to their under-representation in genomic databases. Kappaphycus alvarezii, a Gigartinales algae, is a valuable source of carrageenan and is extensively cultivated in many countries. The majority of seaweed farming in Southeast Asia is done in intertidal zones under varying light (i.e., spectra and irradiance) and carbon dioxide (CO2) conditions, which affects the rate of photosynthesis. This study conducted transcriptome profiling to investigate the photosynthetic mechanisms in K. alvarezii exposed to different wavelengths of light (i.e., blue, green, and red light, in comparison to white light) and CO2 availability. We analyzed the responses of photosynthetic protein complexes to light and observed that light of different wavelengths regulates a similar set of photosynthetic apparatuses. Under CO2 enrichment, genes encoding C3 and C4 enzymes were found to be actively transcribed, suggesting the likely shift in the carbon metabolism pathway or the involvement of these genes in adaptive physiological processes. This study contributes to the understanding of the regulatory mechanisms of photosynthetic carbon metabolism in red algae and has implications for the culture and commercial production of these economically valuable macroalgae.
  18. Aaqillah-Amr MA, Hidir A, Azra MN, Ahmad-Ideris AR, Abualreesh MH, Noordiyana MN, et al.
    Animals (Basel), 2021 Jun 12;11(6).
    PMID: 34204676 DOI: 10.3390/ani11061761
    The increasing market demand for decapods has led to a considerable interest in cultivating decapod species at a larger scale. Following the development of hatchery technologies, most research has focused on the development of formulated feeds for commercially farmed decapods once they enter the juvenile stages. The use of formulated feed for decapods at a commercial scale is still in the early stages. This is probably because of the unique feeding behavior that decapods possess: being robust, slow feeders and bottom dwellers, their feeding preferences change during the transition from pelagic larvae to benthic juveniles as their digestive systems develop and become more complex. The current practice of decapod aquaculture involves the provision of juveniles with food such as natural diet, live feed, and formulated feed. Knowledge of nutrient requirements enables diets to be better formulated. By manipulating the levels of proteins and lipids, a formulated feed can be expected to lead to optimal growth in decapods. At the same time, the pellet's physical characteristics are important factors to be considered upon formulating commercially farmed decapod feeds, considering the unique feeding behavior of the decapod. However, most published studies on decapod nutrition lack data on the physical characteristics of the feed types. Thus, it is difficult to establish a standard feed formulation that focuses on the physical pellet properties. Moreover, careful consideration must be given to the feeding behavior of species, as decapods are known as bottom feeders and are robust in terms of handling feed. Information on the pellet forms, diet composition, and unique feeding behaviors in commercially farmed decapods is gathered to suggest potential better formulated diets that can optimize growth and reproduction. Thus, the purpose of this review is to summarize the information that has been published to date and to come up with suggestions on ways to improve the feed formulation in decapods that comply with their feeding behavior and nutrient requirements. Further research is needed to explore the potential of the pelleted feed at the adult stage so the decapod can take full advantage of the nutrients present in the pellets.
  19. Fauzi NIM, Fen YW, Omar NAS, Hashim HS
    Sensors (Basel), 2021 Jun 03;21(11).
    PMID: 34204853 DOI: 10.3390/s21113856
    Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
    MeSH terms: Agriculture; Food
  20. Aziz MNM, Rahim NFC, Hussin Y, Yeap SK, Masarudin MJ, Mohamad NE, et al.
    Pharmaceuticals (Basel), 2021 Jun 03;14(6).
    PMID: 34204873 DOI: 10.3390/ph14060532
    Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.
External Links