Browse publications by year: 2023

  1. Naomi R, Teoh SH, Rusli RNM, Embong H, Bahari H, Kumar J
    Nutrients, 2023 May 15;15(10).
    PMID: 37242195 DOI: 10.3390/nu15102312
    Maternal obesity can be considered an intergenerational cycle and is also an important indicator of cognitive impairments. It is thought that using natural products is the best and safest way to combat maternal obesity and associated complications. Recent studies have shown that Elateriospermum tapos (E. tapos) contains bioactive compounds with anti-obesity effects, and yoghurt is a convenient medium for supplementing obese maternal rats with E. tapos extract. Thus, the aim of this study is to investigate the impact of E. tapos in yoghurt on maternally obese rats' cognitive function supplemented with a high-fat diet (HFD). In this study, 48 female Sprague-Dawley rats were used. The rats were fed HFD for a period of 16 weeks to induce obesity, after which they were allowed to mate. Upon confirmation of pregnancy, obese rats were given varying doses of E. tapos (5, 50, and 500 mg/kg) in yoghurt until postnatal (PND) day 21. On PND 21, the dams' body mass index (BMI), Lee index, abdominal circumference, oxidative status, and metabolic profile were measured. The behavioral tests (open field, place, and object recognition) were conducted on PND 21 to access memory. The results show that the 50 and 500 mg/kg E. tapos in yoghurt supplemented groups had similar BMI, Lee index, abdominal circumference, lipid profile, FBG, insulin, FRAP, and GSH levels, as well as a similar recognition index, in comparison with the control group supplemented with saline. In conclusion, the results of this study indicate that the newly formulated E. tapos in yogurt can act as an anti-obesity agent in maternal obesity, alleviate anxiety, and enhance hippocampal-dependent memory.
    MeSH terms: Animals; Anxiety/drug therapy; Anxiety/etiology; Female; Humans; Obesity/metabolism; Pregnancy; Yogurt; Rats, Sprague-Dawley; Rats; Diet, High-Fat/adverse effects; Mild Cognitive Impairment*
  2. Abd Mutalib N, Syed Mohamad SA, Jusril NA, Hasbullah NI, Mohd Amin MCI, Ismail NH
    Pharmaceuticals (Basel), 2023 May 07;16(5).
    PMID: 37242494 DOI: 10.3390/ph16050712
    BACKGROUND: In recent years, the potential role of probiotics has become prominent in the discoveries of neurotherapy against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Lactic acid bacteria (LAB) exhibit neuroprotective properties and exert their effects via various mechanisms of actions. This review aimed to evaluate the effects of LAB on neuroprotection reported in the literature.

    METHODS: A database search on Google Scholar, PubMed, and Science Direct revealed a total of 467 references, of which 25 were included in this review based on inclusion criteria which comprises 7 in vitro, 16 in vivo, and 2 clinical studies.

    RESULTS: From the studies, LAB treatment alone or in probiotics formulations demonstrated significant neuroprotective activities. In animals and humans, LAB probiotics supplementation has improved memory and cognitive performance mainly via antioxidant and anti-inflammatory pathways.

    CONCLUSIONS: Despite promising findings, due to limited studies available in the literature, further studies still need to be explored regarding synergistic effects, efficacy, and optimum dosage of LAB oral bacteriotherapy as treatment or prevention against neurodegenerative diseases.

  3. Leu JSL, Teoh JJX, Ling ALQ, Chong J, Loo YS, Mat Azmi ID, et al.
    Pharmaceutics, 2023 May 06;15(5).
    PMID: 37242663 DOI: 10.3390/pharmaceutics15051421
    Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.
  4. Razali RA, Vijakumaran U, Fauzi MB, Lokanathan Y
    Pharmaceutics, 2023 May 18;15(5).
    PMID: 37242776 DOI: 10.3390/pharmaceutics15051534
    Numerous biomaterials have been developed over the years to enhance the outcomes of endoscopic sinus surgery (ESS) for patients with chronic rhinosinusitis. These products are specifically designed to prevent postoperative bleeding, optimize wound healing, and reduce inflammation. However, there is no singular material on the market that can be deemed the optimal material for the nasal pack. We systematically reviewed the available evidence to assess the functional biomaterial efficacy after ESS in prospective studies. The search was performed using predetermined inclusion and exclusion criteria, and 31 articles were identified in PubMed, Scopus, and Web of Science. The Cochrane risk-of-bias tool for randomized trials (RoB 2) was used to assess each study's risk of bias. The studies were critically analyzed and categorized into types of biomaterial and functional properties, according to synthesis without meta-analysis (SWiM) guidelines. Despite the heterogeneity between studies, it was observed that chitosan, gelatin, hyaluronic acid, and starch-derived materials exhibit better endoscopic scores and significant potential for use in nasal packing. The published data support the idea that applying a nasal pack after ESS improves wound healing and patient-reported outcomes.
  5. Lam ILJ, Mohd Affandy MA, 'Aqilah NMN, Vonnie JM, Felicia WXL, Rovina K
    Polymers (Basel), 2023 May 16;15(10).
    PMID: 37242902 DOI: 10.3390/polym15102328
    The main goal of this investigation is to conduct a thorough analysis of the physical, chemical, and morphological characteristics of chitosan derived from various forest fungi. Additionally, the study aims to determine the effectiveness of this vegetal chitosan as an antimicrobial agent. In this study, Auricularia auricula-judae, Hericium erinaceus, Pleurotus ostreatus, Tremella fuciformis, and Lentinula edodes were examined. The fungi samples were subjected to a series of rigorous chemical extraction procedures, including demineralization, deproteinization, discoloration, and deacetylation. Subsequently, the chitosan samples were subjected to a comprehensive physicochemical characterization analysis, encompassing Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), degree of deacetylation determination, ash content determination, moisture content determination, and solubility determination. To evaluate the antimicrobial efficacy of the vegetal chitosan samples, two different sampling parameters were employed, namely human hand and banana, to assess their effectiveness in inhibiting microbial growth. Notably, the percentage of chitin and chitosan varied significantly among the distinct fungal species examined. Moreover, EDX spectroscopy confirmed the extraction of chitosan from H. erinaceus, L. edodes, P. ostreatus, and T. fuciformis. The FTIR spectra of all samples revealed a similar absorbance pattern, albeit with varying peak intensities. Furthermore, the XRD patterns for each sample were nearly identical, with the exception of the A. auricula-judae sample, which exhibited sharp peaks at ~37° and ~51°, while the crystallinity index of this same sample was approximately 17% lower than the others. The moisture content results indicated that the L. edodes sample was the least stable, while the P. ostreatus sample was the most stable, in terms of degradation rate. Similarly, the solubility of the samples showed substantial variation among each species, with the H. erinaceus sample displaying the highest solubility among the rest. Lastly, the antimicrobial activity of the chitosan solutions exhibited different efficacies in inhibiting microbial growth of skin microflora and microbes found on the peel of Musa acuminata × balbisiana.
  6. Kamaruddin ZH, Jumaidin R, Kamaruddin ZH, Asyraf MRM, Razman MR, Khan T
    Polymers (Basel), 2023 May 18;15(10).
    PMID: 37242939 DOI: 10.3390/polym15102364
    Cymbopogan citratus fibre (CCF) is an agricultural waste plant derived from a natural cellulosic source of fibre that can be used in various bio-material applications. This paper beneficially prepared thermoplastic cassava starch/palm wax blends incorporated with Cymbopogan citratus fibre (TCPS/PW/CCF) bio-composites at different CCF concentrations of 0, 10, 20, 30, 40, 50 and 60 wt%. In contrast, palm wax loading remained constant at 5 wt% concentration using the hot moulding compression method. TCPS/PW/CCF bio-composites were characterised in the present paper via their physical and impact properties. The addition of CCF significantly improved impact strength by 50.65% until 50 wt% CCF loading. Furthermore, it was observed that the inclusion of CCF resulted in a little decrement in biocomposite solubility compared to neat TPCS/PW biocomposite from 28.68% to 16.76%. Water absorption showed higher water resistance in the composites incorporating 60 wt.% fibre loading. The TPCS/PW/CCF biocomposites with different fibre contents had 11.04-5.65% moisture content, which was lower than the control biocomposite. The thickness of all samples decreased gradually with increasing fibre content. Overall, these findings provide evidence that CCF waste can be utilised as a high-quality filler in biocomposites due to its diverse characteristics, including improving the properties of biocomposites and strengthening their structural integrity.
  7. Thongphang C, Namphonsane A, Thanawan S, Chia CH, Wongsagonsup R, Smith SM, et al.
    Polymers (Basel), 2023 May 19;15(10).
    PMID: 37242963 DOI: 10.3390/polym15102388
    Plastic waste poses a significant challenge for the environment, particularly smaller plastic products that are often difficult to recycle or collect. In this study, we developed a fully biodegradable composite material from pineapple field waste that is suitable for small-sized plastic products that are difficult to recycle, such as bread clips. We utilized starch from waste pineapple stems, which is high in amylose content, as the matrix, and added glycerol and calcium carbonate as the plasticizer and filler, respectively, to improve the material's moldability and hardness. We varied the amounts of glycerol (20-50% by weight) and calcium carbonate (0-30 wt.%) to produce composite samples with a wide range of mechanical properties. The tensile moduli were in the range of 45-1100 MPa, with tensile strengths of 2-17 MPa and an elongation at break of 10-50%. The resulting materials exhibited good water resistance and had lower water absorption (~30-60%) than other types of starch-based materials. Soil burial tests showed that the material completely disintegrated into particles smaller than 1 mm within 14 days. We also created a bread clip prototype to test the material's ability to hold a filled bag tightly. The obtained results demonstrate the potential of using pineapple stem starch as a sustainable alternative to petroleum-based and biobased synthetic materials in small-sized plastic products while promoting a circular bioeconomy.
  8. Kong U, Mohammad Rawi NF, Tay GS
    Polymers (Basel), 2023 May 22;15(10).
    PMID: 37242974 DOI: 10.3390/polym15102399
    The introduction of bioplastics has been an evolution for plastic industry since conventional plastics have been claimed to cause several environmental issues. Apart from its biodegradability, one of the advantages can be identified of using bioplastic is that they are produced by renewal resources as the raw materials for synthesis. Nevertheless, bioplastics can be classified into two types, which are biodegradable and non-biodegradable, depending on the type of plastic that is produced. Although some of the bioplastics are non-biodegradable, the usage of biomass in synthesising the bioplastics helps in preserving non-renewable resources, which are petrochemical, in producing conventional plastics. However, the mechanical strength of bioplastic still has room for improvement as compared to conventional plastics, which is believed to limit its application. Ideally, bioplastics need to be reinforced for improving their performance and properties to serve their application. Before 21st century, synthetic reinforcement has been used to reinforce conventional plastic to achieve its desire properties to serve its application, such as glass fiber. Owing to several issues, the trend has been diversified to utilise natural resources as reinforcements. There are several industries that have started to use reinforced bioplastic, and this article focuses on the advantages of using reinforced bioplastic in various industries and its limitations. Therefore, this article aims to study the trend of reinforced bioplastic applications and the potential applications of reinforced bioplastics in various industries.
  9. Amjad Z, Maryam I, Munir M, Salman M, Baraka MA, Mustafa ZU, et al.
    Vaccines (Basel), 2023 Apr 27;11(5).
    PMID: 37243008 DOI: 10.3390/vaccines11050904
    COVID-19 vaccine hesitancy continues to be a widespread problem in Pakistan due to various conspiracy beliefs, myths and misconceptions. Since the hemodialysis population is at a higher risk of contracting infections, we sought to investigate the current COVID-19 immunization status and reasons for any vaccine hesitancy among these patients in Pakistan. This cross-sectional study was conducted among maintenance hemodialysis patients at six hospitals in the Punjab Province of Pakistan. Data were collected anonymously using a questionnaire. A total of 399 hemodialysis patients took part in the survey, the majority of them were male (56%) and aged 45-64 years. A calculated 62.4% of the patients reported receiving at least one dose of the COVID-19 vaccine. Of those vaccinated (249), 73.5% had received two doses and 16.9% had received a booster dose. The most common reasons for vaccination were "being aware they were at high risk" (89.6%), "fear of getting infected" (89.2%) and "willingness to fight against COVID-19-pandemic" (83.9%). Of the 150 patients who had not yet been vaccinated, only 10 showed a willingness to take the COVID-19 vaccine. The major reasons for refusal included "COVID-19 is not a real problem" (75%), the "corona vaccine is a conspiracy (72.1%)" and "I don't need the vaccine" (60.7%). Our study revealed that only 62% patients receiving hemodialysis were partially or completely vaccinated against COVID-19. Consequently, there is a need to initiate aggressive approaches to educate this high-risk population in order to address their concerns with vaccine safety and efficacy as well as correct current myths and misconceptions to improve the COVID-19 immunization status in this population.
  10. Abdullah N, Goh YX, Othman R, Ismail N, Jalal N, Wan Sallam WAF, et al.
    J Clin Lab Anal, 2023 Apr;37(8):e24898.
    PMID: 37243371 DOI: 10.1002/jcla.24898
    OBJECTIVE: Glycated haemoglobin (HbA1c) is a standard indication for screening type 2 diabetes that also has been widely used in large-scale epidemiological studies. However, its long-term quality (in terms of reproducibility) stored in liquid nitrogen is still unknown. This study is aimed to evaluate the stability and reproducibility of HbA1c measurements from frozen whole blood samples kept at -196°C for more than 7 years.

    METHODS: A total of 401 whole blood samples with a fresh HbA1c measurement were randomly selected from The Malaysian Cohort's (TMC) biobank. The HbA1c measurements of fresh and frozen (stored for 7-8 years) samples were assayed using different high-performance liquid chromatography (HPLC) systems. The HbA1c values of the fresh samples were then calculated and corrected according to the later system. The reproducibility of HbA1c measurements between calculated-fresh and frozen samples was assessed using a Passing-Bablok linear regression model. The Bland-Altman plot was then used to evaluate the concordance of HbA1c values.

    RESULTS: The different HPLC systems highly correlated (r = 0.99) and agreed (ICC = 0.96) with each other. Furthermore, the HbA1c measurements for frozen samples strongly correlate with the corrected HbA1c values of the fresh samples (r = 0.875) with a mean difference of -0.02 (SD: -0.38 to 0.38). Although the mean difference is small, discrepancies were observed within the diabetic and non-diabetic samples.

    CONCLUSION: These data demonstrate that the HbA1c measurements between fresh and frozen samples are highly correlated and reproducible.

    MeSH terms: Chromatography, High Pressure Liquid/methods; Diabetes Mellitus*; Diabetes Mellitus, Type 2*; Hemoglobin A, Glycosylated; Humans; Reproducibility of Results; Cohort Studies; Linear Models
  11. Mohamed SM, Abou-Ghadir OMF, El-Mokhtar MA, Aboraia AS, Abdel Aal AM
    J Nat Prod, 2023 May 26;86(5):1150-1158.
    PMID: 37098901 DOI: 10.1021/acs.jnatprod.2c00793
    Cancer is often associated with an aberrant increase in tubulin and microtubule activity required for cell migration, invasion, and metastasis. A new series of fatty acid conjugated chalcones have been designed as tubulin polymerization inhibitors and anticancer candidates. These conjugates were designed to harness the beneficial physicochemical properties, ease of synthesis, and tubulin inhibitory activity of two classes of natural components. New lipidated chalcones were synthesized from 4-aminoacetophenone via N-acylation followed by condensation with different aromatic aldehydes. All new compounds showed strong inhibition of tubulin polymerization and antiproliferative activity against breast and lung cancer cell lines (MCF-7 and A549) at low or sub-micromolar concentrations. A significant apoptotic effect was shown using a flow cytometry assay that corresponded to cytotoxicity against cancer cell lines, as indicated by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. Decanoic acid conjugates were more potent than longer lipid analogues, with the most active being more potent than the reference tubulin inhibitor, combretastatin-A4 and the anticancer drug, doxorubicin. None of the newly synthesized compounds caused any detectable cytotoxicity against the normal cell line (Wi-38) or hemolysis of red blood cells below 100 μM. It is unlikely that the new conjugates described would affect normal cells or interrupt with cell membranes due to their lipidic nature. A quantitative structure-activity relationship analysis was performed to determine the influence of 315 descriptors of the physicochemical properties of the new conjugates on their tubulin inhibitory activity. The obtained model revealed a strong correlation between the tubulin inhibitory activity of the investigated compounds and their dipole moment and degree of reactivity.
    MeSH terms: Drug Screening Assays, Antitumor; Microtubules/metabolism; Structure-Activity Relationship; Tubulin/metabolism; Molecular Structure; Quantitative Structure-Activity Relationship; Cell Line, Tumor; Cell Proliferation; Tubulin Modulators/chemistry
  12. Guoyan S, Khaskheli A, Raza SA, Ali S
    Environ Sci Pollut Res Int, 2023 Jun;30(26):68143-68162.
    PMID: 37120502 DOI: 10.1007/s11356-023-27136-5
    According to the United Nations Agenda, the 2023 sustainable environment is necessary to secure this planet's future; public-private partnerships investment in energy is crucial to sustainable development. The research examines the quantile association between public-private partnership ventures in energy and environmental degradation in ten developing nations, and data is used from January 1998-December 2016. The advanced econometrics quantile-on-quantile regression approach is used to control the issues of heterogeneity and asymmetric relationship. According to the quantile-on-quantile approach, there is a strong positive association between public-private partnerships in energy and environmental degradation in Argentina, Brazil, Bangladesh, and India. But the negative relationship is observed on different quantiles of China, Malaysia, Mexico, Peru, Thailand, and the Philippines. The findings suggest that the world needs to act as a single community and divert its resources toward renewable energy sources to control climate change; also, to accomplish the UN 15-year road map of Agenda 2023 with 17-SDGs; out of these 17 sustainable goals, SDG-7 is related to affordable and clean energy, SDG-11 is about sustainable cities and communities, and SDG-13 focuses on climate action for sustainable development.
    MeSH terms: Carbon Dioxide/analysis; China; Cities; Investments; Public-Private Sector Partnerships*; Economic Development; Renewable Energy
  13. Posadino AM, Giordo R, Ramli I, Zayed H, Nasrallah GK, Wehbe Z, et al.
    Biomed Pharmacother, 2023 Jul;163:114783.
    PMID: 37121149 DOI: 10.1016/j.biopha.2023.114783
    Anthocyanins are colored polyphenolic compounds that belong to the flavonoids family and are largely present in many vegetables and fruits. They have been used in traditional medicine in many cultures for a long time. The most common and abundant anthocyanins are those presenting an O-glycosylation at C-3 (C ring) of the flavonoid skeleton to form -O-β-glucoside derivatives. The present comprehensive review summarized recent data on the anticancer properties of cyanidings along with natural sources, phytochemical data, traditional medical applications, molecular mechanisms and recent nanostrategies to increase the bioavailability and anticancer effects of cyanidins. For this analysis, in vitro, in vivo and clinical studies published up to the year 2022 were sourced from scientific databases and search engines such as PubMed/Medline, Google scholar, Web of Science, Scopus, Wiley and TRIP database. Cyanidins' antitumor properties are exerted during different stages of carcinogenesis and are based on a wide variety of biological activities. The data gathered and discussed in this review allows for affirming that cyanidins have relevant anticancer activity in vitro, in vivo and clinical studies. Future research should focus on studies that bring new data on improving the bioavailability of anthocyanins and on conducting detailed translational pharmacological studies to accurately establish the effective anticancer dose in humans as well as the correct route of administration.
    MeSH terms: Flavonoids/therapeutic use; Humans; Phytotherapy; Plant Extracts/pharmacology; Chemoprevention; Phytochemicals/pharmacology
  14. Aupama V, Kao-Ian W, Sangsawang J, Mohan G, Wannapaiboon S, Mohamad AA, et al.
    Nanoscale, 2023 May 25;15(20):9003-9013.
    PMID: 37128979 DOI: 10.1039/d3nr00898c
    Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.
  15. Loganathan L, Yap SP, Lau BF, Nagapan M
    Environ Sci Pollut Res Int, 2023 Jun;30(26):69176-69191.
    PMID: 37133663 DOI: 10.1007/s11356-023-27256-y
    Replacing conventional fine aggregates with spent mushroom substrate (SMS) is aimed at developing a sustainable lightweight masonry mortar. It is also an alternative solution for the current improper mushroom waste disposals. Density, workability, compressive strength, specific strength, flexural strength, ultrasonic pulse velocity, water absorption, sorptivity, and equivalent CO2 emission in relation to sand reduction in mortars containing 2.5-15.0% (by volume) SMS passing through a 4.75-mm sieve were investigated. As the percentages of replacement increased from 2.5 to 15.0%, the density of the SMS mortar reduced up to 34.8%, with corresponding compressive strengths of 24.96 to 3.37 MPa. Mixes with up to 12.5% SMS met the minimum compressive and flexural strengths as stated in the ASTM C129 standard. In addition, the equivalent CO2 emission of the mixes reduced 15.09% as the SMS content increased while cost-effectiveness increases up to 98.15% until 7.5% SMS replacement. In conclusion, the use of SMS as fine aggregates up to 12.5% is a viable mix design strategy for producing sustainable lightweight mortar with a lower carbon emission.
    MeSH terms: Agaricales*; Carbon Dioxide; Construction Materials; Water/chemistry; Compressive Strength
  16. Radonjić NV, Bellato A, Khoury NM, Cortese S, Faraone SV
    CNS Drugs, 2023 May;37(5):381-397.
    PMID: 37166701 DOI: 10.1007/s40263-023-01005-8
    BACKGROUND: For some adults with Attention-Deficit/Hyperactivity Disorder (ADHD), nonstimulants need to be considered either as a monotherapy or as an adjunct to stimulants.

    OBJECTIVES: The objectives of this systematic review and meta-analysis were to assess the efficacy, acceptability, and tolerability of nonstimulants in adults with ADHD.

    METHODS: Data sources, searches, and study selection were based on a previously published network meta-analysis of randomized clinical trials (RCTs) by Cortese at al. (Lancet Psychiatry 5(9):727-738, 2018), which we updated in March 2022. Specifically, we searched PubMed, BIOSIS Previews, CINAHL, the Cochrane Central Register of Controlled Trials, EMBASE, ERIC, MEDLINE, PsycINFO, OpenGrey, Web of Science Core Collection, ProQuest Dissertations and Theses (UK and Ireland), ProQuest Dissertations and Theses (abstracts and international), and the WHO International Trials Registry Platform, including ClinicalTrials.gov for double-blind RCTs with a placebo arm, lasting at least one week, including adults with a diagnosis of ADHD based on DSM-III, DSM-III-R, DSM-IV(TR), DSM-5 or ICD-9- or 10, and reporting data on efficacy, tolerability (drop-out due to side effects) and acceptability (drop-out due to any cause) of guanfacine, clonidine, or atomoxetine. Additionally, we searched for RCTs of viloxazine extended release (ER), approved for ADHD in 2021. Random-effects meta-analyses were conducted, and the risk of bias for individual RCTs was assessed using the Cochrane Risk of Bias tool.

    RESULTS: We included 18 studies in the meta-analyses (4308 participants) plus one additional study in the narrative synthesis (374 participants). The meta-analysis showed that atomoxetine (15 RCTs) (Hedge's g = - 0.48, 95% CI [- 0.64; - 0.33]), guanfacine (two RCTs) (Hedge's g = - 0.66, 95% CI [- 0.94; - 0.38]) and viloxazine ER (one RCT) were significantly more efficacious than placebo. Atomoxetine was less well tolerated than placebo, while tolerability of guanfacine and viloxazine ER could not be meta-analysed, since only one study, for each medication, reported on it.

    CONCLUSIONS: All investigated nonstimulants were more efficacious in the treatment of ADHD in adults, than placebo, while the placebo had better acceptability and tolerability.

    PROTOCOL: https://osf.io/5vnmt/?view_only=2bf87ed12ba94645babedceeee4c0120 .

    MeSH terms: Atomoxetine Hydrochloride/adverse effects; Adult; Humans; Viloxazine*; Randomized Controlled Trials as Topic; Guanfacine/adverse effects
  17. Campos BG, Moreira LB, G F E P, Cruz ACF, Perina FC, Abreu F, et al.
    Environ Pollut, 2023 Aug 01;330:121797.
    PMID: 37169238 DOI: 10.1016/j.envpol.2023.121797
    DCOIT is an effective antifouling biocide, which presence in the environment and toxicity towards non-target species has been generating great concern. This study evaluated the waterborne toxicity of DCOIT on marine invertebrates (i.e., survival of brine shrimp Artemia sp., larval development of the sea urchin Echinometra lucunter and the mussel Perna perna), as well as DCOIT-spiked-sediment toxicity on the fecundity rate of the copepod Nitrocra sp. And the mortality of the amphipod Tiburonella viscana. The data outcomes were used to calculate environmental hazards and risks, which were compared to their corresponding values obtained from temperate regions. Waterborne toxicity can be summarized as follows: Artemia sp. (LC50-48h = 163 (135-169) μg/L), E. lucunter (EC50-36h = 33.9 (17-65) μg/L), and P. perna (EC50-48h = 8.3 (7-9) μg/L). For whole-sediment toxicity, metrics were calculated for T. viscana (LC50-10d = 0.5 (0.1-2.6) μg/g) and Nitrocra sp, (EC50-10d = 200 (10-480) μg/kg). The DCOIT hazard was assessed for both tropical and non-tropical pelagic organisms. The predicted no-effect concentration (PNEC) for tropical species (0.19 μg/L) was 1.7-fold lower than that for non-tropical organisms (0.34 μg/L). In whole-sediment exposures, DCOIT presented a PNEC of 0.97 μg/kg, and the risk quotients (RQs) were >1 for areas with constant input of DCOIT such as ports ship/boatyards, marinas, and maritime traffic zones of Korea, Japan, Spain, Malaysia, Indonesia, Vietnam, and Brazil. The presented data are important for supporting the establishment of policies and regulations for booster biocides worldwide.
    MeSH terms: Animals; Artemia; Lethal Dose 50; Water; Aquatic Organisms
  18. Wiart C, Kathirvalu G, Raju CS, Nissapatorn V, Rahmatullah M, Paul AK, et al.
    Molecules, 2023 May 04;28(9).
    PMID: 37175283 DOI: 10.3390/molecules28093873
    This review identifies terpenes isolated from the medicinal Angiosperms of Asia and the Pacific with antibacterial and/or antifungal activities and analyses their distribution, molecular mass, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022. About 300 antibacterial and/or antifungal terpenes were identified during this period. Terpenes with a MIC ≤ 2 µg/mL are mostly amphiphilic and active against Gram-positive bacteria, with a molecular mass ranging from about 150 to 550 g/mol, and a polar surface area around 20 Ų. Carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6'-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are chemical frameworks that could be candidates for the further development of lead antibacterial or antifungal drugs.
    MeSH terms: Anti-Bacterial Agents/pharmacology; Asia; Terpenes/pharmacology; Angiosperms*
  19. Posadino AM, Giordo R, Pintus G, Mohammed SA, Orhan IE, Fokou PVT, et al.
    Biomed Pharmacother, 2023 Jul;163:114866.
    PMID: 37182516 DOI: 10.1016/j.biopha.2023.114866
    Artemisinin (ART) is a bioactive compound isolated from the plant Artemisia annua and has been traditionally used to treat conditions such as malaria, cancer, viral infections, bacterial infections, and some cardiovascular diseases, especially in Asia, North America, Europe and other parts of the world. This comprehensive review aims to update the biomedical potential of ART and its derivatives for treating human diseases highlighting its pharmacokinetic and pharmacological properties based on the results of experimental pharmacological studies in vitro and in vivo. Cellular and molecular mechanisms of action, tested doses and toxic effects of artemisinin were also described. The analysis of data based on an up-to-date literature search showed that ART and its derivatives display anticancer effects along with a wide range of pharmacological activities such as antibacterial, antiviral, antimalarial, antioxidant and cardioprotective effects. These compounds have great potential for discovering new drugs used as adjunctive therapies in cancer and various other diseases. Detailed translational and experimental studies are however needed to fully understand the pharmacological effects of these compounds.
    MeSH terms: Humans
  20. Khoo YW, Gao L, Khaw YS, Tan HT, Li S, Chong KP
    Plant Dis, 2023 May 25.
    PMID: 37227434 DOI: 10.1094/PDIS-01-23-0109-PDN
    Paspalum conjugatum (family Poaceae), locally known as Buffalo grass, is a perennial weed that can be found in rice field, residential lawn, and sod farm in Malaysia (Uddin et al. 2010; Hakim et al. 2013). In September 2022, Buffalo grass with rust symptoms and signs were collected from the lawn located in Universiti Malaysia Sabah in the province of Sabah (6°01'55.6"N, 116°07'15.7"E). The incidence was 90%. Yellow uredinia were observed primarily on the abaxial surface of the leaves. As the disease progressed, leaves were covered with coalescing pustules. Microscopic examination of pustules revealed the presence of urediniospores. Urediniospores were ellipsoid to obovoid in shape, contents in yellow, 16.4-28.8 x 14.0-22.4 μm and echinulate, with a prominent tonsure on most of the spores. A fine brush was used to collect yellow urediniospores, and genomic DNA was extracted based on Khoo et al. (2022a). The primers Rust28SF/LR5 (Vilgalys and Hester 1990; Aime et al. 2018) and CO3_F1/CO3_R1 (Vialle et al. 2009) were used to amplify partial 28S ribosomal RNA (28S) and cytochrome c oxidase III (COX3) gene fragments following the protocols of Khoo et al. (2022b). The sequences were deposited in GenBank under accession numbers OQ186624- OQ186626 (985/985 bp) (28S) and OQ200381-OQ200383 (556/556 bp) (COX3). They were 100% similar to Angiopsora paspalicola 28S (MW049243) and COX3 (MW036496) sequences. Phylogenetic analysis using maximum likelihood based on the combined 28S and COX3 sequences indicated that the isolate formed a supported clade to A. paspalicola. Koch's postulates were performed with spray inoculations of urediniospores suspended in water (106 spores/ml) on leaves of three healthy Buffalo grass leaves, while water was sprayed on three additional Buffalo grass leaves which served as control. The inoculated Buffalo grass were placed in the greenhouse. Symptoms and signs similar to those of the field collection occurred after 12 days post inoculation. No symptoms occurred on controls. To our knowledge, this is the first report of A. paspalicola causing leaf rust on P. conjugatum in Malaysia. Our findings expand the geographic range of A. paspalicola in Malaysia. Albeit P. conjugatum is a host of the pathogen, but the host range of the pathogen especially in Poaceae economic crops need to be studied. Weed management could be an effective way to eliminate inoculum sources of A. paspalicola.
External Links