Browse publications by year: 2023

  1. Muhd Helmi MA, Lai NM, Van Rostenberghe H, Ayub I, Mading E
    Cochrane Database Syst Rev, 2023 May 04;5(5):CD013841.
    PMID: 37142550 DOI: 10.1002/14651858.CD013841.pub2
    BACKGROUND: Central venous catheters (CVC) are associated with potentially dangerous complications such as thromboses, pericardial effusions, extravasation, and infections in neonates. Indwelling catheters are amongst the main risk factors for nosocomial infections. The use of skin antiseptics during the preparation for central catheter insertion may prevent catheter-related bloodstream infections (CRBSI) and central line-associated bloodstream infections (CLABSI). However, it is still not clear which antiseptic solution is the best to prevent infection with minimal side effects.

    OBJECTIVES: To systematically evaluate the safety and efficacy of different antiseptic solutions in preventing CRBSI and other related outcomes in neonates with CVC.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and trial registries up to 22 April 2022. We checked reference lists of included trials and systematic reviews that related to the intervention or population examined in this Cochrane Review.  SELECTION CRITERIA: Randomised controlled trials (RCTs) or cluster-RCTs were eligible for inclusion in this review if they were performed in the neonatal intensive care unit (NICU), and were comparing any antiseptic solution (single or in combination) against any other type of antiseptic solution or no antiseptic solution or placebo in preparation for central catheter insertion. We excluded cross-over trials and quasi-RCTs.

    DATA COLLECTION AND ANALYSIS: We used the standard methods from Cochrane Neonatal. We used the GRADE approach to assess the certainty of the evidence.

    MAIN RESULTS: We included three trials that had two different comparisons: 2% chlorhexidine in 70% isopropyl alcohol (CHG-IPA) versus 10% povidone-iodine (PI) (two trials); and CHG-IPA versus 2% chlorhexidine in aqueous solution (CHG-A) (one trial). A total of 466 neonates from level III NICUs were evaluated. All included trials were at high risk of bias. The certainty of the evidence for the primary and some important secondary outcomes ranged from very low to moderate. There were no included trials that compared antiseptic skin solutions with no antiseptic solution or placebo. CHG-IPA versus 10% PI Compared to PI, CHG-IPA may result in little to no difference in CRBSI (risk ratio (RR) 1.32, 95% confidence interval (CI) 0.53 to 3.25; risk difference (RD) 0.01, 95% CI -0.03 to 0.06; 352 infants, 2 trials, low-certainty evidence) and all-cause mortality (RR 0.88, 95% CI 0.46 to 1.68; RD -0.01, 95% CI -0.08 to 0.06; 304 infants, 1 trial, low-certainty evidence). The evidence is very uncertain about the effect of CHG-IPA on CLABSI (RR 1.00, 95% CI 0.07 to 15.08; RD 0.00, 95% CI -0.11 to 0.11; 48 infants, 1 trial; very low-certainty evidence) and chemical burns (RR 1.04, 95% CI 0.24 to 4.48; RD 0.00, 95% CI -0.03 to 0.03; 352 infants, 2 trials, very low-certainty evidence), compared to PI. Based on a single trial, infants receiving CHG-IPA appeared less likely to develop thyroid dysfunction compared to PI (RR 0.05, 95% CI 0.00 to 0.85; RD -0.06, 95% CI -0.10 to -0.02; number needed to treat for an additional harmful outcome (NNTH) 17, 95% CI 10 to 50; 304 infants). Neither of the two included trials assessed the outcome of premature central line removal or the proportion of infants or catheters with exit-site infection. CHG-IPA versus CHG-A The evidence suggests CHG-IPA may result in little to no difference in the rate of proven CRBSI when applied on the skin of neonates prior to central line insertion (RR 0.80, 95% CI 0.34 to 1.87; RD -0.05, 95% CI -0.22 to 0.13; 106 infants, 1 trial, low-certainty evidence) and CLABSI (RR 1.14, 95% CI 0.34 to 3.84; RD 0.02, 95% CI -0.12 to 0.15; 106 infants, 1 trial, low-certainty evidence), compared to CHG-A. Compared to CHG-A, CHG-IPA probably results in little to no difference in premature catheter removal (RR 0.91, 95% CI 0.26 to 3.19; RD -0.01, 95% CI -0.15 to 0.13; 106 infants, 1 trial, moderate-certainty evidence) and chemical burns (RR 0.98, 95% CI 0.47 to 2.03; RD -0.01, 95% CI -0.20 to 0.18; 114 infants, 1 trial, moderate-certainty evidence). No trial assessed the outcome of all-cause mortality and the proportion of infants or catheters with exit-site infection.

    AUTHORS' CONCLUSIONS: Based on current evidence, compared to PI, CHG-IPA may result in little to no difference in CRBSI and mortality. The evidence is very uncertain about the effect of CHG-IPA on CLABSI and chemical burns. One trial showed a statistically significant increase in thyroid dysfunction with the use of PI compared to CHG-IPA. The evidence suggests CHG-IPA may result in little to no difference in the rate of proven CRBSI and CLABSI when applied on the skin of neonates prior to central line insertion. Compared to CHG-A, CHG-IPA probably results in little to no difference in chemical burns and premature catheter removal. Further trials that compare different antiseptic solutions are required, especially in low- and middle-income countries, before stronger conclusions can be made.

    MeSH terms: Chlorhexidine/adverse effects; Humans; Infant; Infant, Newborn
  2. Nuid M, Aris A, Abdullah S, Fulazzaky MA, Muda K
    J Environ Manage, 2023 Sep 01;341:118032.
    PMID: 37163834 DOI: 10.1016/j.jenvman.2023.118032
    Biogranulation technology is an emerging biological process in treating various wastewater. However, the development of biogranules requires an extended period of time when treating wastewaters with high oil and grease (O&G) content. A study was therefore conducted to assess the formation of biogranules through bioaugmentation with the Serratia marcescens SA30 strain, in treating real anaerobically digested palm oil mill effluent (AD-POME), with O&G of about 4600 mg/L. The biogranules were developed in a lab-scale sequencing batch reactor (SBR) system under alternating anaerobic and aerobic conditions. The experimental data were assessed using the modified mass transfer factor (MMTF) models to understand the mechanisms of biosorption of O&G on the biogranules. The system was run with variable organic loading rates (OLR) of 0.69-9.90 kg/m3d and superficial air velocity (SAV) of 2 cm/s. After 60 days of being bioaugmented with the Serratia marcescens SA30 strain, the flocculent biomass transformed into biogranules with excellent settleability with improved treatment efficiency. The biogranules showed a compact structure and good settling ability with an average diameter of about 2 mm, a sludge volume index at 5 min (SVI5) of 43 mL/g, and a settling velocity (SV) of 81 m/h after 256 days of operation. The average removal efficiencies of O&G increased from 6 to 99.92%, respectively. The application of the MMTF model verified that the resistance to O&G biosorption is controlled via film mass transfer. This research indicates successful bioaugmentation of biogranules using the Serratia marcescens SA30 strain for enhanced biodegradation of O&G and is capable to treat real AD-POME.
    MeSH terms: Hydrocarbons; Sewage; Waste Disposal, Fluid*; Bioreactors*; Waste Water
  3. Zulkernain NH, Uvarajan T, Ng CC
    J Environ Manage, 2023 Sep 01;341:117926.
    PMID: 37163837 DOI: 10.1016/j.jenvman.2023.117926
    Phytoremediation is a biological remediation technique known for low-cost technology and environmentally friendly approach, which employs plants to extract, stabilise, and transform various compounds, such as potentially toxic elements (PTEs), in the soil or water. Recent developments in utilising chelating agents soil remediation have led to a renewed interest in chelate-induced phytoremediation. This review article summarises the roles of various chelating agents and the mechanisms of chelate-induced phytoremediation. This paper also discusses the recent findings on the impacts of chelating agents on PTEs uptake and plant growth and development in phytoremediation. It was found that the chelating agents have increased the rate of metal absorption and translocation up to 45% from roots to the aboveground plant parts during PTEs phytoremediation. Besides, it was also explored that the plants may experience some phytotoxicity after adding chelating agents to the soil. However, due to the leaching potential of synthetic chelating agents, the use of organic chelants have been explored to be used in PTEs phytoremediation. Finally, this paper also presents comprehensive insights on the significance of using chelating agents through SWOT analysis to discuss the advantages and limitations of chelate-induced phytoremediation.
    MeSH terms: Biodegradation, Environmental*; Chelating Agents; Metals/analysis; Plants; Soil
  4. Wang W, Zhang F, Zhao Q, Liu C, Jim CY, Johnson VC, et al.
    J Environ Manage, 2023 Oct 01;343:118249.
    PMID: 37245314 DOI: 10.1016/j.jenvman.2023.118249
    Understanding the main driving factors of oasis river nutrients in arid areas is important to identify the sources of water pollution and protect water resources. Twenty-seven sub-watersheds were selected in the lower oasis irrigated agricultural reaches of the Kaidu River watershed in arid Northwest China, divided into the site, riparian, and catchment buffer zones. Data on four sets of explanatory variables (topographic, soil, meteorological elements, and land use types) were collected. The relationships between explanatory variables and response variables (total phosphorus, TP and total nitrogen, TN) were analyzed by redundancy analysis (RDA). Partial least squares structural equation modeling (PLS-SEM) was used to quantify the relationship between explanatory as well as response variables and fit the path relationship among factors. The results showed that there were significant differences in the TP and TN concentrations at each sampling point. The catchment buffer exhibited the best explanatory power of the relationship between explanatory and response variables based on PLS-SEM. The effects of various land use types, meteorological elements (ME), soil, and topography in the catchment buffer were responsible for 54.3% of TP changes and for 68.5% of TN changes. Land use types, ME and soil were the main factors driving TP and TN changes, accounting for 95.56% and 94.84% of the total effects, respectively. The study provides a reference for river nutrients management in arid oases with irrigated agriculture and a scientific and targeted basis to mitigate water pollution and eutrophication of rivers in arid lands.
    MeSH terms: China; Environmental Monitoring; Nitrogen/analysis; Phosphorus/analysis; Soil; Least-Squares Analysis
  5. Muller L, Goh BS, Cordovés AP, Sargsyan G, Sikka K, Singh S, et al.
    Int J Pediatr Otorhinolaryngol, 2023 Jul;170:111583.
    PMID: 37245391 DOI: 10.1016/j.ijporl.2023.111583
    OBJECTIVES: The aim of this study was to report on the educational placement, quality of life and speech reception changes in a prospectively recruited group of children after they received a cochlear implant (CI).

    METHOD: Data was collected on 1085 CI recipients of as part of a prospective, longitudinal, observational, international, multi-centre, paediatric registry, initiated by Cochlear Ltd (Sydney, NSW, Australia). Outcome data from children (≤10 years old) implanted in routine practice was voluntarily entered into a central, externally hosted, e-platform. Collection occurred prior to initial device activation (baseline) and at six monthly follow-up intervals up to 24 months and then at 3 years post activation. Clinician reported baseline and follow up questionnaires and Categories of Auditory Performance version II (CAP-II) outcomes were collated. Self-reported evaluation forms and patient information were provided by the parent/caregiver/patient via the implant recipient baseline and follow up, Children Using Hearing Implants Quality of Life (CuHIQoL) and Speech Spatial Qualities (SSQ-P) Parents Version questionnaires.

    RESULTS: Children were mainly bilaterally profoundly deaf, unilaterally implanted and used a contralateral hearing aid. Prior to implant 60% used signing or total communication as their main mode of communication. Mean age at implant was 3.2 ± 2.2 years (range 0-10 years). At baseline 8.6% were in mainstream education with no additional support and 82% had not yet entered school. After three years of implant use, 52% had entered mainstream education with no additional support and 38% had not yet entered school. In the sub-group of 141 children who were implanted at or after three years of age and were thus old enough to be in mainstream school at the three-year follow up, an even higher proportion (73%) were in mainstream education with no support. Quality of life scores for the child improved statistically significantly post implant compared to baseline and continued to improve significantly at each interval up to 3 years (p 

    MeSH terms: Child; Child, Preschool; Cochlear Implants*; Humans; Infant; Infant, Newborn; Prospective Studies; Quality of Life; Treatment Outcome; Cochlear Implantation*
  6. Kheimi M, K Salamah S, A Maddah H, Mustafa Al Bakri Abdullah M
    Chemosphere, 2023 Sep;335:139036.
    PMID: 37245592 DOI: 10.1016/j.chemosphere.2023.139036
    Considering the limitation of fossil fuel resources and their environmental effects, the use of renewable energies is increasing. In the current research, a combined cooling and power production (CCPP) system is investigated, the energy source of which is solar energy. Solar energy absorbs by solar flat plate collectors (SFPC). The system produces power with the help of an organic Rankine cycle (ORC). An ejector refrigeration cycle (ERC) system is considered to provide cooling capacity. The motive flow is supplied from the expander extraction in the ERC system. Various working fluids have been applied so far for the ORC-ERC cogeneration system. This research investigates the effect of using two working fluids R-11 and R-2545fa, and the zeotropic mixtures obtained by mixing these two fluids. A multiobjective optimization process is considered to select the appropriate working fluid. In the optimization design process, the goal is to minimize the total cost rate (TCR) and maximize the exergy efficiency of the system. The design variables are the quantity of SFPC, heat recovery vapor generator (HRVG) pressure, ejector motive flow pressure, evaporator pressure, condenser pressure, and entertainment ratio. Finally, it is observed that using zeotropic mixtures obtained from these two refrigerants has a better result than using pure refrigerants. Finally, it is observed that the best performance is achieved when R-11 and R245fa are mixed with a ratio of 80 to 20%, respectively and led to 8.5% improvement in exergy efficiency, while the increase in TCR is only 1.5%.
    MeSH terms: Climate; Cold Temperature; Hot Temperature*; Receptors, Antigen, T-Cell; Solar Energy*
  7. Yong KJ, Wu TY
    Bioresour Technol, 2023 Sep;384:129238.
    PMID: 37245662 DOI: 10.1016/j.biortech.2023.129238
    Utilizing lignocellulosic biomass wastes to produce bioproducts is essential to address the reliance on depleting fossil fuels. However, lignin is often treated as a low-value-added component in lignocellulosic wastes. Valorization of lignin into value-added products is crucial to improve the economic competitiveness of lignocellulosic biorefinery. Monomers obtained from lignin depolymerization could be upgraded into fuel-related products. However, lignins obtained from conventional methods are low in β-O-4 content and, therefore, unsuitable for monomer production. Recent literature has demonstrated that lignins extracted with alcohol-based solvents exhibit preserved structures with high β-O-4 content. This review discusses the recent advances in utilizing alcohols to extract β-O-4-rich lignin, where discussion based on different alcohol groups is considered. Emerging strategies in employing alcohols for β-O-4-rich lignin extraction, including alcohol-based deep eutectic solvent, flow-through fractionation, and microwave-assisted fractionation, are reviewed. Finally, strategies for recycling or utilizing the spent alcohol solvents are also discussed.
    MeSH terms: Ethanol*; Solvents/chemistry; Waste Management*; Biomass
  8. Alzahrani B, Elderdery AY, Alsrhani A, Alzerwi NAN, Althobiti MM, Elkhalifa AME, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125054.
    PMID: 37245766 DOI: 10.1016/j.ijbiomac.2023.125054
    The present study investigated the cytotoxicity and proapoptotic properties of iron oxide-sodium-alginate-thymoquinone nanocomposites against breast cancer MDA-MB-231 cells in vitro and in silico. This study used chemical synthesis to formulate the nanocomposite. Electron microscopies such as scanning (SEM) and transmission (TEM), Fourier transform infrared (FT-IR), Ultraviolet-Visible, Photoluminescence spectroscopy, selected area (electron) diffraction (SAED), energy dispersive X-ray analysis (EDX), and X-ray diffraction studies (XRD) were used to characterize the synthesized ISAT-NCs and the average size of them was found to be 55 nm. To evaluate the cytotoxic, antiproliferative, and apoptotic potentials of ISAT-NCs on MDA-MB-231 cells, MTT assays, FACS-based cell cycle studies, annexin-V-PI staining, ELISA, and qRT-PCR were used. PI3K-Akt-mTOR receptors and thymoquinone were predicted using in-silico docking studies. Cell proliferation is reduced in MDA-MB-231 cells due to ISAT-NC cytotoxicity. As a result of FACS analysis, ISAT-NCs had nuclear damage, ROS production, and elevated annexin-V levels, which resulted in cell cycle arrest in the S phase. The ISAT-NCs in MDA-MB-231 cells were found to downregulate PI3K-Akt-mTOR regulatory pathways in the presence of inhibitors of PI3K-Akt-mTOR, showing that these regulatory pathways are involved in apoptotic cell death. We also predicted the molecular interaction between thymoquinone and PI3K-Akt-mTOR receptor proteins using in-silico docking studies which also support PI3K-Akt-mTOR signaling inhibition by ISAT-NCs in MDA-MB-231 cells. As a result of this study, we can conclude that ISAT-NCs inhibit the PI3K-Akt-mTOR pathway in breast cancer cell lines, causing apoptotic cell death.
    MeSH terms: Alginates; Female; Humans; Apoptosis; Annexins; Spectroscopy, Fourier Transform Infrared; Phosphatidylinositol 3-Kinases/metabolism; Cell Line, Tumor; Cell Proliferation; TOR Serine-Threonine Kinases/metabolism; MCF-7 Cells
  9. Low EJ, Yusoff HM, Batar N, Nor Azmi INZ, Chia PW, Lam SS, et al.
    Environ Sci Pollut Res Int, 2023 Jul;30(31):76297-76307.
    PMID: 37246180 DOI: 10.1007/s11356-023-27823-3
    Corrosion inhibitors have offered new opportunities to bring positive impacts on our society, especially when it has helped in protecting metals against corrosion in an aqueous solution. Unfortunately, the commonly known corrosion inhibitors used to protect metals or alloys against corrosion are invariably related to one or more drawbacks such as the employment of hazardous anti-corrosion agents, leakage of anti-corrosion agents in aqueous solution, and high solubility of anti-corrosion agents in water. Over the years, using food additives as anti-corrosion agents have drawn interest as it offers biocompatibility, less toxic, and promising applications. In general, food additives are considered safe for human consumption worldwide, and it was rigorously tested and approved by the US Food and Drug Administration. Nowadays, researchers are more interested in innovating and using green, less toxic, and economical corrosion inhibitors in metal and alloy protection. As such, we have reviewed the use of food additives to protect metals and alloys against corrosion. The current review is significant and differs from the previous review articles made on corrosion inhibitors, in which the new role of food additives is highlighted as green and environmental-friendly substances in the protection of metals and alloys against corrosion. It is anticipated that the next generation will be utilizing non-toxic and sustainable anti-corrosion agents, in which food additives might be the potential to fulfill the green chemistry goals.
    MeSH terms: Humans; Water/chemistry
  10. Wu R, Xi Z, Liu M, Ren H, Dai R, Jiang X, et al.
    Chin Med, 2023 May 28;18(1):61.
    PMID: 37246229 DOI: 10.1186/s13020-023-00774-0
    BACKGROUND: Pancreatic cancer (PAC), a malignancy that is fatal and commonly diagnosed at a late stage. Despite considerable advancements in cancer treatment, the survival rate of PAC remains largely consistent for the past 60 years. The traditional Chinese medicine formula Pulsatilla Decoction (PD) has been clinically used to treat inflammatory diseases for millennia and recently as a supplementary anti-cancer treatment in China. However, the bioactive ingredients and mechanisms underlying its anti-cancer effect remains unclear.

    METHODS: The composition and quality control of PD were verified through analysis by high performance liquid chromatography. Cell viability was determined using Cell Counting Kit-8 assay. The cell cycle distribution was analyzed through PI staining and flow cytometry analysis, while apoptotic cells were measured by double staining with Annexin V-FITC and PI. We used immunoblotting to examine protein expressions. The in vivo effects of β-peltatin and podophyllotoxin were evaluated on a subcutaneously-xenografted BxPC-3 cell nude mice model.

    RESULTS: The current study demonstrated that PD markedly inhibited PAC cell proliferation and triggered their apoptosis. Four herbal PD formula was then disassembled into 15 combinations of herbal ingredients and a cytotoxicity assay showed that the Pulsatillae chinensis exerted the predominant anti-PAC effect. Further investigation indicated that β-peltatin was potently cytotoxic with IC50 of ~ 2 nM. β-peltatin initially arrested PAC cells at G2/M phase, followed by apoptosis induction. Animal study confirmed that β-peltatin significantly suppressed the growth of subcutaneously-implanted BxPC-3 cell xenografts. Importantly, compared to podophyllotoxin that is the parental isomer of β-peltatin but clinically obsoleted due to its severe toxicity, β-peltatin exhibited stronger anti-PAC effect and lower toxicity in mice.

    CONCLUSIONS: Our results demonstrate that Pulsatillae chinensis and particularly its bioactive ingredient β-peltatin suppress PAC by triggering cell cycle arrest at G2/M phase and apoptosis.

  11. Majeed MA, Shafri HZM, Wayayok A, Zulkafli Z
    Geospat Health, 2023 May 25;18(1).
    PMID: 37246539 DOI: 10.4081/gh.2023.1176
    This research proposes a 'temporal attention' addition for long-short term memory (LSTM) models for dengue prediction. The number of monthly dengue cases was collected for each of five Malaysian states i.e. Selangor, Kelantan, Johor, Pulau Pinang, and Melaka from 2011 to 2016. Climatic, demographic, geographic and temporal attributes were used as covariates. The proposed LSTM models with temporal attention was compared with several benchmark models including a linear support vector machine (LSVM), a radial basis function support vector machine (RBFSVM), a decision tree (DT), a shallow neural network (SANN) and a deep neural network (D-ANN). In addition, experiments were conducted to analyze the impact of look-back settings on each model performance. The results showed that the attention LSTM (A-LSTM) model performed best, with the stacked, attention LSTM (SA-LSTM) one in second place. The LSTM and stacked LSTM (S-LSTM) models performed almost identically but with the accuracy improved by the attention mechanism was added. Indeed, they were both found to be superior to the benchmark models mentioned above. The best results were obtained when all attributes were included in the model. The four models (LSTM, S-LSTM, A-LSTM and SA-LSTM) were able to accurately predict dengue presence 1-6 months ahead. Our findings provide a more accurate dengue prediction model than previously used, with the prospect of also applying this approach in other geographic areas.
    MeSH terms: Humans; Neural Networks (Computer); Support Vector Machine
  12. Syed Soffian SS, Mohammed Nawi A, Hod R, Abdul Maulud KN, Mohd Azmi AT, Hasim Hashim MH, et al.
    Geospat Health, 2023 May 25;18(1).
    PMID: 37246545 DOI: 10.4081/gh.2023.1158
    INTRODUCTION: The rise in colorectal cancer (CRC) incidence becomes a global concern. As geographical variations in the CRC incidence suggests the role of area-level determinants, the current study was designed to identify the spatial distribution pattern of CRC at the neighbourhood level in Malaysia.

    METHOD: Newly diagnosed CRC cases between 2010 and 2016 in Malaysia were identified from the National Cancer Registry. Residential addresses were geocoded. Clustering analysis was subsequently performed to examine the spatial dependence between CRC cases. Differences in socio-demographic characteristics of individuals between the clusters were also compared. Identified clusters were categorized into urban and semi-rural areas based on the population background.

    RESULT: Most of the 18 405 individuals included in the study were male (56%), aged between 60 and 69 years (30.3%) and only presented for care at stages 3 or 4 of the disease (71.3%). The states shown to have CRC clusters were Kedah, Penang, Perak, Selangor, Kuala Lumpur, Melaka, Johor, Kelantan, and Sarawak. The spatial autocorrelation detected a significant clustering pattern (Moran's Index 0.244, p< 0.01, Z score >2.58). CRC clusters in Penang, Selangor, Kuala Lumpur, Melaka, Johor, and Sarawak were in urbanized areas, while those in Kedah, Perak and Kelantan were in semi-rural areas.

    CONCLUSION: The presence of several clusters in urbanized and semi-rural areas implied the role of ecological determinants at the neighbourhood level in Malaysia.  Such findings could be used to guide the policymakers in resource allocation and cancer control.

    MeSH terms: Aged; Female; Humans; Malaysia/epidemiology; Male; Middle Aged; Residence Characteristics*; Cluster Analysis; Spatial Analysis
  13. Rizwan M, Ali S, Javid A, von Fricken ME, Rashid MI
    Acta Trop, 2023 Jul;243:106940.
    PMID: 37160189 DOI: 10.1016/j.actatropica.2023.106940
    Bartonella can infect a variety of mammals including humans and has been detected in the Americas, Europe, Africa, and Asia. Roughly two-thirds of identified Bartonella species are found and maintained in rodent reservoirs, with some of these species linked to human infections. Rodents (N=236) were caught from the Sahiwal division of Punjab, Pakistan and tested for Bartonella using PCR targeting gltA and rpoB genes, followed by sequencing of rpoB-positive samples. Genetic relatedness to other published Bartonella spp. rpoB gene sequences were examined using BLAST and phylogenetic analysis. Overall, 7.62% (18/236) of rodents were positive for both gltA and rpoB fragments. Rattus rattus and R. norvegicus had 7.94% (12/151) and 7.05% (6/85) positivity rates for Bartonella DNA, respectively. Phylogenetic analysis revealed a close relatedness between Bartonella spp. from Pakistan to Bartonella spp. from China, Nepal, and Malaysia. This study is the first reported detection of Bartonella spp. in R. rattus and R. norvegicus from the Sahiwal area of Punjab, Pakistan.
    MeSH terms: Animals; Humans; Mammals; Pakistan/epidemiology; Phylogeny; Rodentia; Molecular Epidemiology; Rats
  14. Fong SL, Thuy Le MA, Lim KS, Khosama H, Ohnmar O, Savath S, et al.
    Epilepsia, 2023 Aug;64(8):2116-2125.
    PMID: 37243851 DOI: 10.1111/epi.17668
    OBJECTIVE: One of the objectives of the Intersectoral Global Action Plan on epilepsy and other neurological disorders for 2022 to 2031 is to ensure at least 80% of people with epilepsy (PWE) will have access to appropriate, affordable, and safe antiseizure medications (ASMs) by 2031. However, ASM affordability is a significant issue in low- and middle-income countries, preventing PWE from accessing optimal treatment. This study aimed to determine the affordability of the newer (second and third generation) ASMs in resource-limited countries in Asia.

    METHODS: We conducted a cross-sectional survey by contacting country representatives in lower-middle-income countries (LMICs) in Asia, including Indonesia, Lao People's Democratic Republic (PDR), Myanmar, Philippines, Vietnam, India, Bangladesh, and Pakistan, and the upper-middle-income country Malaysia, from March 2022 to April 2022. The affordability of each ASM was calculated by dividing the 30-day ASM cost by the daily wage of the lowest paid unskilled laborers. Treatment costing 1 day's wage or less for a 30-day supply of chronic disease is considered affordable.

    RESULTS: Eight LMICs and one upper-middle-income country were included in this study. Lao PDR had no newer ASM, and Vietnam had only three newer ASMs. The most frequently available ASMs were levetiracetam, topiramate, and lamotrigine, and the least frequently available was lacosamide. The majority of the newer ASMs were unaffordable, with the median number of days' wages for a 30-day supply ranging from 5.6 to 14.8 days.

    SIGNIFICANCE: All new generation ASMs, whether original or generic brands, were unaffordable in most Asian LMICs.

    MeSH terms: Asia; Costs and Cost Analysis; Cross-Sectional Studies; Humans; India
  15. Loeillet S, Nicolas A
    DNA Repair (Amst), 2023 Jul;127:103514.
    PMID: 37244009 DOI: 10.1016/j.dnarep.2023.103514
    The evolutionarily conserved DNA polymerase delta (Polδ) plays several essential roles in eukaryotic DNA replication and repair, responsible for the synthesis of the lagging-strand, lower replicative mutagenesis via its proof-reading exonuclease activity and synthetizes both strands during break-induced replication. In Saccharomyces cerevisiae, the Polδ protein complex consists of three subunits encoded by the POL3, POL31 and POL32 genes. Surprisingly, in contrast to POL3 and POL31, the POL32 gene deletion was found to be viable but lethal in all other eukaryotes, raising the question to which extent the viability of the POL32 deletion in S. cerevisiae was species specific. To address this issue, we inactivated the POL32 gene in 10 evolutionary close or distant S. cerevisiae strains and found that POL32 was either essential (3 strains including SK1), non-essential (5 strains including the reference S288C strain) or confers a slow-growth phenotype (2 strains). Whole-genome sequencing of S288C/SK1 pol32∆ meiotic segregants identified the lethal/suppressor effect of the single Pol31-C43Y polymorphism. Consistently, the introduction of the Pol31-43C allele in the SK1 and West African (WA) pol32∆ mutants was sufficient to restore cell viability and wild-type growth upon introduction of two copies of POL31-43C in the SK1 haploid strain. Reciprocally, introduction of the SK1 POL31-43Y allele in the S288C pol32∆ mutant was lethal. Sequence analyses of the POL31 polymorphisms in the 1,011 yeasts genome dataset correlates with the strict occurrence of the POL31-43Y allele in the yeast African palm wine clade. Differently, the single Pol31-E400G polymorphism confers pol32∆ lethality in the Malaysian strain. In the yeast two-hybrid assay, we observed a weakened interaction between Pol3 and Pol31-43Y versus Pol31-43C suggesting an insufficient level of the Polδ holoenzyme stability/activity. Thus, the enigmatic non-essentiality of Pol32 in S. cerevisiae results from single Pol31 amino acid polymorphism and is clade rather than species specific.
    MeSH terms: DNA-Directed DNA Polymerase/metabolism; DNA Replication; Saccharomyces cerevisiae/metabolism
  16. Lee ZY, Lew CCH, Berger MM, Hill A, Stoppe C
    Lancet Respir Med, 2023 Jul;11(7):e62-e63.
    PMID: 37244261 DOI: 10.1016/S2213-2600(23)00214-X
    MeSH terms: Critical Care; Humans; Nutritional Status; Shock*
  17. Beishenaliev A, Loke YL, Goh SJ, Geo HN, Mugila M, Misran M, et al.
    J Control Release, 2023 Jul;359:268-286.
    PMID: 37244297 DOI: 10.1016/j.jconrel.2023.05.032
    Monospecific antibodies have been utilised increasingly for anti-cancer drug targeting owing to their ability to minimise off-target toxicity by binding specifically to a tumour epitope, hence selectively delivering drugs to the tumour cells. Nevertheless, the monospecific antibodies only engage a single cell surface epitope to deliver their drug payload. Hence, their performance is often unsatisfactory in cancers where multiple epitopes need to be engaged for optimal cellular internalisation. In this context, bispecific antibodies (bsAbs) that simultaneously target two distinct antigens or two distinct epitopes of the same antigen offer a promising alternative in antibody-based drug delivery. This review describes the recent advances in developing bsAb-based drug delivery strategies, encompassing the direct conjugation of drug to bsAbs to form bispecific antibody-drug conjugates (bsADCs) and the surface functionalisation of nanoconstructs with bsAbs to form bsAb-coupled nanoconstructs. The article first details the roles of bsAbs in enhancing the internalisation and intracellular trafficking of bsADCs with subsequent release of chemotherapeutic drugs for an augmented therapeutic efficacy, particularly among heterogeneous tumour cell populations. Then, the article discusses the roles of bsAbs in facilitating the delivery of drug-encapsulating nanoconstructs, including organic/inorganic nanoparticles and large bacteria-derived minicells, that provide a larger drug loading capacity and better stability in blood circulation than bsADCs. The limitations of each type of bsAb-based drug delivery strategy and the future prospects of more versatile strategies (e.g., trispecific antibodies, autonomous drug delivery systems, theranostics) are also elaborated.
    MeSH terms: Epitopes; Antigens; Humans
  18. Roslee NF, Kamil NAFM, Alias S, Senthil Kumar P, Alkhadher S, Muthusamy G, et al.
    Chemosphere, 2023 Sep;334:139037.
    PMID: 37244559 DOI: 10.1016/j.chemosphere.2023.139037
    Palm oil fuel ash (POFA) has limited use as a fertilizer, while contribute effectively to the environmental contamination and health risks. Petroleum sludge poses a serious effect on the ecological environment and human health. The present work aimed to present a novel encapsulation process with POFA binder for treating petroleum sludge. Among 16 polycyclic aromatic hydrocarbons, four compounds were selected for the optimization of encapsulation process due to their high risk as carcinogenic substrates. Percentage PS (10-50%) and curing days (7-28 days) factors were used in the optimization process. The leaching test of PAHs was assessed using a GC-MS. The best operating parameters to minimize PAHs leaching from solidified cubes with OPC and10% POFA were recorded with 10% PS and after 28 days, at which PAH leaching was 4.255 and 0.388 ppm with R2 is 0.90%. Sensitivity analysis of the actual and predicted results for both the control and the test (OPC and 10% POFA) revealed that the actual results of the 10% POFA experiments have a high consistency with the predicted data (R2 0.9881) while R2 in the cement experiments was 0.8009. These differences were explained based on the responses of PAH leaching toward percentage of PS and days of cure. In the OPC encapsulation process, the main role was belonged to PS% (94.22%), while with 10% POFA, PS% contributed by 32.36 and cure day contributed by 66.91%.
    MeSH terms: Environmental Pollution; Humans; Petroleum*; Sewage/chemistry
  19. Asmary A, Nurulhuda AS, Hong JGS, Gan F, Adlan AS, Hamdan M, et al.
    Am J Obstet Gynecol MFM, 2023 Aug;5(8):101031.
    PMID: 37244640 DOI: 10.1016/j.ajogmf.2023.101031
    BACKGROUND: The adoption of Enhanced Recovery After Cesarean is increasing, but evidence supporting individual interventions having a specific benefit to Enhanced Recovery After Cesarean is lacking. A key element in Enhanced Recovery After Cesarean is early oral intake. Maternal complications are more frequent in unplanned cesarean delivery. In planned cesarean delivery, immediate full feeding enhances recovery, but the effect of unplanned cesarean delivery during labor is not known.

    OBJECTIVE: This study aimed to evaluate immediate oral full feeding vs on-demand oral full feeding after unplanned cesarean delivery in labor on vomiting and maternal satisfaction.

    STUDY DESIGN: A randomized controlled trial was conducted in a university hospital. The first participant was enrolled on October 20, 2021, the last participant was enrolled on January 14, 2023, and follow-up was completed on January 16, 2023. Women were assessed for full eligibility on arrival at the postnatal ward after their unplanned cesarean delivery. The primary outcomes were vomiting in the first 24 hours (noninferiority hypothesis and 5% noninferiority margin) and maternal satisfaction with their feeding regimen (superiority hypothesis). The secondary outcomes were time to first feed; food and beverage quantum consumed at first feed; nausea, vomiting, and bloating at 30 minutes after first feed, at 8, 16, and 24 hours after the operation, and at hospital discharge; parenteral antiemetic and opiate analgesia use; first breastfeeding and satisfactory breastfeeding, bowel sound, and flatus; second meal; cessation of intravenous fluid; removal of a urinary catheter; urination; ambulation; vomiting during the rest of hospital stay; and serious maternal complications. Data were analyzed using the t test, Mann-Whitney U test, chi-square test, Fisher exact test, and repeated measures analysis of variance as appropriate.

    RESULTS: Overall, 501 participants were randomized into immediate or on-demand oral full feeding (sandwich and beverage). Vomiting in the first 24 hours were reported by 5 of 248 participants (2.0%) in the immediate feeding group and 3 of 249 participants (1.2%) in the on-demand feeding group (relative risk, 1.7; 95% confidence interval, 0.4-6.9 [0.48%-8.28%]; P=.50), and the maternal satisfaction scores from 0 to 10 were 8 (6-9) for the immediate feeding group and 8 (6-9) for the on-demand feeding groups (P=.97). The times from cesarean delivery to the first meal were 1.9 hours (1.4-2.7) vs 4.3 hours (2.8-5.6) (P

    MeSH terms: Female; Humans; Labor, Obstetric*; Pregnancy; Vomiting
  20. Luh HT, Yang ST, Lu YH, Lu YC, Chan JY, Tu YK, et al.
    Clin Neuroradiol, 2023 Jun;33(2):319-325.
    PMID: 36056108 DOI: 10.1007/s00062-022-01211-9
    PURPOSE: Rete middle cerebral artery (MCA) anomaly is characterized by a web-like network of arteries involving the first MCA segment (M1) and a normal downstream MCA. The detailed composition of this anomaly and the hemodynamic impacts on cerebral perfusion are rarely addressed. The purpose of this study was to elucidate the anatomical and hemodynamic perspectives of the rete MCA anomaly.

    METHODS: From August 2020 to December 2021, 4 rete MCA anomalies were identified at Shuang Ho hospital. Clinical information, perfusion magnetic resonance (MR) imaging, and angiographic images were collected. Detailed angioarchitecture, including types of arterial feeders and extent of rete involvement, were analyzed based on three-dimensional volume-rendering reconstruction images obtained from the catheter-based angiographies.

    RESULTS: Despite their variable clinical presentations (two hemorrhage, one ischemia, and one asymptomatic), all cases shared common angiographic findings as follows: (1) the internal carotid artery did not connect directly to the rete, (2) the anterior choroidal artery (AChA) was the artery constantly supplying the rete and (3) there was a watershed zone shift toward MCA territory. The perfusion MR cerebral blood flow map was symmetric in all studied cases.

    CONCLUSION: The AChA is an artery constantly supplying the rete, which suggests that the angioarchitectural features associated with this anomaly may be the result of both congenital and acquired compensatory processes. Cerebral perfusion remains preserved at the lesion side, despite angiographic evidence of watershed zone shift. These findings will be important for making better clinical judgments about this condition.

    MeSH terms: Carotid Artery, Internal; Cerebral Angiography; Cerebral Arteries; Humans; Magnetic Resonance Angiography
External Links