Affiliations 

  • 1 Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
  • 2 Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia. lamsm@utar.edu.my
  • 3 College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
Environ Sci Pollut Res Int, 2023 Sep;30(42):96272-96289.
PMID: 37566326 DOI: 10.1007/s11356-023-29165-6

Abstract

Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 μA cm-2, and power density (Pmax) of 35.6 μW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.