Displaying all 16 publications

Abstract:
Sort:
  1. Wong KA, Lam SM, Sin JC
    J Nanosci Nanotechnol, 2019 08 01;19(8):5271-5278.
    PMID: 30913844 DOI: 10.1166/jnn.2019.16816
    Shaped-controlled ZnO architectures including spherical, rod, rice-like and flower-like were fabricated via a reflux method in which the morphology, crystallinity, functional group and optical properties were tailored under different pH values in the precursor solution. The photoactivities of the prepared ZnO were evaluated under UV irradiation and the findings implied that the flower-like ZnO synthesized at pH 12 displayed superior activities on palm oil mil effluent degradation than those of other structures. The photocatalytic enhancement of flower-like ZnO was ascribed to its unique architecture, good crystallinity and superior optical properties. The flower-like ZnO with excellent photocatalytic performance have been confirmed by formation of hydroxyl radicals using a terephthalic acid-photoluminescence test. There was an optimal photocatalyst amount of 1.0 g/L, at which a maximum chemical oxygen demand removal of palm oil mill effluent was achieved under exposure of UV light. The phytotoxicity experiment via mung beans demonstrated a decrease in phytotoxicity.
  2. Lam SM, Sin JC, Abdullah AZ, Mohamed AR
    Environ Technol, 2013 May-Jun;34(9-12):1097-106.
    PMID: 24191441
    In the work presented here, photocatalytic systems using TiO2 and ZnO suspensions were utilized to evaluate the degradation of resorcinol (ReOH). The effects of catalyst concentration and solution pH were investigated and optimized using multivariate analysis based on response surface methodology. The results indicated that ZnO showed greater degradation and mineralization activities compared to TiO2 under optimized conditions. Using certain radical scavengers, a positive hole, together with the participation of hydroxyl radicals, were the oxidative species responsible for ReOH degradation on TiO2 whereas, the ZnO photocatalysis occurred principally via hydroxyl radicals. Some hitherto unreported pathway intermediates of ReOH degradation were identified using gas chromatography-mass spectrometry. A tentative reaction mechanism for the formation of these intermediates was proposed. Moreover, the figure-of-merit electrical energy per order was employed to estimate the electrical energy consumption.
  3. Sin JC, Lam SM, Lee KT, Mohamed AR
    J Colloid Interface Sci, 2013 Jul 1;401:40-9.
    PMID: 23618322 DOI: 10.1016/j.jcis.2013.03.043
    A novel samarium-doped spherical-like ZnO hierarchical nanostructure (Sm/ZnO) was synthesized via a facile and surfactant-free chemical solution route. The as-synthesized products were characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, field emission scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The results revealed that Sm ion was successfully doped into ZnO. It was also observed that the Sm doping increased the visible light absorption ability of Sm/ZnO and a red shift for Sm/ZnO appeared when compared to pure ZnO. The photocatalytic studies revealed that the Sm/ZnO exhibited excellent photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) compared with the pure ZnO and commercial TiO2 under visible light irradiation. The photocatalytic enhancement of Sm/ZnO products was attributed to their high charge separation efficiency and ·OH generation ability as evidenced by the photoluminescence spectra. The photocatalytic investigation also showed that various parameters exerted their individual influence on the degradation rate of 2,4-DCP. By using a certain of radical scavengers, ·OH was determined to play a pivotal role for the 2,4-DCP degradation. Moreover, the Sm/ZnO could be easily separated and reused, indicating great potential for practical applications in environmental cleanup.
  4. Lam SM, Sin JC, Abdullah AZ, Mohamed AR
    J Colloid Interface Sci, 2015 Jul 15;450:34-44.
    PMID: 25801130 DOI: 10.1016/j.jcis.2015.02.075
    Highly effective WO3/ZnO nanorods (NRs) were synthesized via a hydrothermal-deposition method for degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under natural sunlight. The structural properties of WO3/ZnO NRs such as morphology, crystal structure, porous properties and light absorption characteristics were investigated in detail. The X-ray diffraction and X-ray photoelectron spectroscopy results indicated that the prepared samples were two-phase photocatalysts consisted of WO3 and ZnO NRs. The UV-vis diffuse reflectance spectroscopy result showed that the addition of WO3 altered the optical properties of the photocatalysts. In contrast with the pure ZnO NRs, commercial anatase TiO2 and commercial WO3, the WO3/ZnO NRs showed excellent sunlight photocatalytic activities in degrading 2,4-D. The optimal WO3 loading and calcination temperature were also determined. Based on the band position, the synergetic effect of WO3 and ZnO NRs was the source of the enhanced photocatalytic activity as validated by PL and terephthalic acid-photoluminescence measurements. The reaction intermediates and degradation pathways of 2,4-D were elucidated by a HPLC method. In addition, the extent of mineralization during the 2,4-D degradation was also estimated using total organic carbon (TOC) and ion chromatography (IC) analyses.
  5. Quek JA, Lam SM, Sin JC, Mohamed AR
    PMID: 30099271 DOI: 10.1016/j.jphotobiol.2018.07.030
    Flower-like ZnO micro/nanostructures were successfully fabricated via a surfactant-free co-precipitation method. The as-synthesized product was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) analyses. In the presence of visible light irradiation, the as-synthesized flower-like ZnO showed higher antibacterial activities against Enterococcus faecalis (E. faecalis) and Micrococcus luteus (M. luteus) than that of commercial ZnO. The excellent antibacterial performance of synthesized flower-like ZnO was also observed via the bacterial morphological change, K+ ions leakage and protein leakage in extracellular suspension. In addition, the FTIR investigation on both treated bacteria further confirmed the bacterial membrane damage via cellular substance alteration. The enhancement of the antibacterial activity of synthesized ZnO can be attributed to the unique flower-like morphology which can increase the surface OH- groups and the quantity of photogenerated electron-hole pair available to participate in the photocatalytic reaction. The reactive oxidizing species (ROS) scavengers experiments showed that H2O2 played a main role in the photocatalytic antibacterial process. Our study showed that the synthesized flower-like ZnO micro/nanostructures can act as efficient antibacterial agents in the photocatalytic antibacterial process under visible light irradiation.
  6. Lam SM, Sin JC, Lin H, Li H, Zeng H
    Chemosphere, 2020 Apr;245:125565.
    PMID: 31855765 DOI: 10.1016/j.chemosphere.2019.125565
    An approach that can recuperate of energy from wastewater treatment process is highly necessitate and would help to surmount the both environmental pollution and energy crisis issues. A photocatalytic fuel cell (PFC) employing an anodic TiO2/ZnO/Zn and a cathodic CuO/Cu has been applied to degrade the raw greywater, which realized advanced organics destruction, bacteria disinfection, and synchronously electricity production. The improved photocatalytic performance has been observed when the cell was incorporated with anodic TiO2/ZnO/Zn under UV and sunlight irradiation due to the enhanced electric field conductivity of the catalysts and heterojunction interface of TiO2. In the constructed UV-activated PFC system, the electricity production capability was observed with the measured voltage and power density of 868 mV and 0.0172 mW cm-2, respectively. Advanced chemical oxygen demand (COD) removal efficiency of greywater achieved a 100% completion within 60 min of light irradiation. The Escherichia coli (E. coli) colonies decreased significantly and accounted ∼99% disinfection efficiency. Moreover, the photoelectrochemical and photoluminescence (PL) experiments elucidated that the charge carrier separation efficiency were higher when TiO2 was coupled to ZnO. The organic matter elimination principle was assessed by radical trapping experiment, and the findings indicated that the hydroxyl (OH) radical and hole (h+) appeared as major functions in the reaction. The stable cycle operation of the cell has been also obtained owing to the stable and film-type materials of anodic material. This performance was among the highest documented for PFC using real wastewater effluent as the fuel source.
  7. Jaffari ZH, Lam SM, Sin JC, Mohamed AR
    Environ Sci Pollut Res Int, 2019 Apr;26(10):10204-10218.
    PMID: 30758796 DOI: 10.1007/s11356-019-04503-9
    Visible light-responsive Pt-loaded coral-like BiFeO3 (Pt-BFO) nanocomposite at different Pt loadings was synthesized via a two-step hydrothermal synthesis method. The as-synthesized photocatalyst was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and magnetic hysteresis loop (M-H loop) analyses. The FESEM images revealed that Pt nanoparticles were evenly distributed on the coral-like BFO. The UV-vis DRS results indicated that the addition of Pt dopant modified the optical properties of the BFO. The as-synthesized Pt-BFO nanocomposite was effectively applied for the photodegradation of malachite green (MG) dye under visible light irradiation. Specifically, 0.5 wt% Pt-BFO nanocomposite presented boosted photocatalytic performance than those of the pure BFO and commercial TiO2. Such a remarkably improved photoactivity could be mainly attributed to the formation of good interface between Pt and BFO, which not only boosted the separation efficiency of charge carriers but also possessed great redox ability for significant photocatalytic reaction. Moreover, the strong magnetic property of the Pt-BFO nanocomposite was helpful in the particle separation along with its great recyclability. The radical scavenger test indicated that hole (h+), hydroxyl (·OH) radical, and hydrogen peroxide (H2O2) were the main oxidative species for the Pt-BFO photodegradation of MG. Finally, the Pt-BFO nanocomposite was revealed high antibacterial activity towards Bacillus cereus (B. cereus) and Escherichia coli (E. coli) microorganisms, highlighting its potential photocatalytic and antibacterial properties at different industrial and biomedical applications.
  8. Leong WH, Lim JW, Lam MK, Lam SM, Sin JC, Samson A
    J Hazard Mater, 2021 05 05;409:124455.
    PMID: 33168319 DOI: 10.1016/j.jhazmat.2020.124455
    A novel sequential flow baffled microalgal-bacterial (SFB-AlgalBac) photobioreactor was designed to cater for the synergistic interactions between microalgal and bacterial consortia to enhance nitrogen assimilation into microalgal biomass from nutrient-rich wastewater medium. The performance of the SFB-AlgalBac photobioreactor was found to be optimum at the influent flow rate of 5.0 L/d, equivalent to 20 days of hydraulic retention time (HRT). The highest microalgal nitrogen assimilation rate (0.0271 /d) and biomass productivity (1350 mg/d) were recorded amidst this flow rate. Further increase to the 10.0 L/d flow rate reduced the photobioreactor performance, as evidenced by a reduction in microalgal biomass productivity (>10%). The microalgal biomass per unit of nitrogen assimilated values were attained at 16.69 mg/mg for the 5.0 L/d flow rate as opposed to 7.73 mg/mg for the 10.0 L/d flow rate, despite both having comparable specific growth rates. Also, the prior influent treatment by activated sludge was found to exude extracellular polymeric substances which significantly improved the microalgal biomass settleability up to 37%. The employment of SFB-AlgalBac photobioreactor is anticipated could exploit the low-cost nitrogen sources from nutrient-rich wastewaters via bioconversion into valuable microalgal biomass while fulfilling the requirements of sustainable wastewater treatment technologies.
  9. Kee MW, Soo JW, Lam SM, Sin JC, Mohamed AR
    J Environ Manage, 2018 Dec 15;228:383-392.
    PMID: 30243074 DOI: 10.1016/j.jenvman.2018.09.038
    Recycling of alternative water sources particularly greywater and recovery of energy from wastewater are gaining momentum due to clean water scarcity and energy crisis. In this study, the photocatalytic fuel cell (PFC) employing ZnO/Zn photoanode and CuO/Cu photocathode was successfully designed for effective greywater recycling as well as energy recovery. The photoelectrodes were analyzed using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and fourier transform infrared (FTIR) spectroscopy. The PFC performance in terms of electricity generation and parallel methyl green (MG) degradation were evaluated under operating parameters such as electrolyte type, initial MG concentration and solution pH. The results showed that the addition of Na2SO4 electrolyte, MG concentration of 40 mg L-1 and solution pH of 5.2 improved the short circuit current density (Jsc) and power density (Pmax) in the as-constructed PFC. Such a system also afforded highest MG and chemical oxygen demand (COD) removal efficiencies after 4 h of irradiation. The photoanodes used in this study demonstrated great recyclability after four repetition tests. The COD removal was reduced to some extents when the PFC treatment was tested in the real greywater under optimal conditions. Various greywater quality parameters including ammoniacal nitrogen (NH3-N), turbidity, pH and biochemical oxygen demand (BOD5) were also monitored. The phytotoxicity experiments via Vigna radiate seeds indicated a reduction in the phytotoxicity.
  10. Lam SM, Sin JC, Zeng H, Lin H, Li H, Mohamed AR, et al.
    Chemosphere, 2022 Jan;287(Pt 4):132384.
    PMID: 34597645 DOI: 10.1016/j.chemosphere.2021.132384
    BiFeO3 nanoparticle decorated on flower-like ZnO (BiFeO3/ZnO) was fabricated through a facile hydrothermal-reflux combined method. This material was utilized as a composite photocathode for the first time in microbial fuel cell (MFC) to reduce the copper ion (Cu2+) and power generation concomitantly. The resultant BiFeO3/ZnO-based MFC displayed distinct photoelectrocatalytic activities when different weight percentages (wt%) BiFeO3 were used. The 3 wt% BiFeO3/ZnO MFC achieved the maximum power density of 1.301 W m-2 in the catholyte contained 200 mg L-1 of Cu2+ and the power density was greatly higher than those pure ZnO and pure BiFeO3 photocathodes. Meanwhile, the MFC exhibited 90.7% removal of Cu2+ within 6 h under sunlight exposure at catholyte pH 4. The addition of BiFeO3 nanoparticles not only manifested outstanding capability in harvesting visible light, but also facilitated the formation of Z-scheme BiFeO3/ZnO heterojunction structure to induce the charge carrier transfer along with enhanced redox abilities for the cathodic reduction. The pronounced electrical output and Cu2+ reduction efficiencies can be realized through the synergistic cooperation between the bioanode and BiFeO3/ZnO photocathode in the MFC. Furthermore, the developed BiFeO3/ZnO composite presented a good stability and reusability of photoelectrocatalytic activity up to five cyclic runs.
  11. Yap CJ, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2023 Sep;30(42):96272-96289.
    PMID: 37566326 DOI: 10.1007/s11356-023-29165-6
    Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 μA cm-2, and power density (Pmax) of 35.6 μW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.
  12. Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(16):23647-23663.
    PMID: 38427169 DOI: 10.1007/s11356-024-32637-y
    Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.
  13. Lam SM, Sin JC, Warren Tong MW, Zeng H, Li H, Huang L, et al.
    Chemosphere, 2023 Dec;344:140402.
    PMID: 37838031 DOI: 10.1016/j.chemosphere.2023.140402
    Environmental conservation and energy scarcity have become two core challenges with the ever-increasing advancement of industry, particularly chemical energy rich wastewater comprising refractory organics and pathogenic microbes. Here, a multifunctional photocatalytic fuel cell (PFC) was devised using NiFe2O4 nanoparticle-loaded on pine tree-like ZnO/Zn (NiFe2O4/ZnO/Zn) photoanode and CuO/Cu2O nanorods-loaded on Cu (CuO/Cu2O/Cu) cathode for extracting electricity upon wastewater treatment. When fed with Rhodamine B (RhB) dyestuff, the NiFe2O4/ZnO/Zn-PFC provided the maximum power density (Pmax) of 0.539 mW cm-2 upon visible light irradiation with an average RhB degradation of 85.2%, which were 2.8 and 2.7 times higher than ZnO/Zn, respectively. The remarkable enhanced NiFe2O4/ZnO/Zn-PFC performance was owing to the synergistic effect of pine tree-like structure and Z-scheme heterostructure. The pine tree-like with high surface area was not only for effective harnessing photon energies but also provided more directional routes for rapid segregation and transport of carriers and higher interface contacting areas with electrolyte. Through a series of systematic characterizations, the Z-scheme heterostructure mechanism of the system and organics degradation pathway were also speculated. Additionally, the performance of the NiFe2O4/ZnO/Zn-PFC in industry printing wastewater showed Pmax of 0.600 mW cm-2, which was considerably impressive as real wastewater was challenging to accomplish. The phytotoxicity outcome also manifested that the comprehensive toxicity of RhB was eradicated after PFC treatment. Lastly, the excellent recyclability and the pronounced bactericidal effect towards Escherichia coli and Staphylococcus aureus were other attributions which enabled the NiFe2O4/ZnO/Zn-PFC for possible practical application.
  14. Wong CY, Lim JW, Chong FK, Lam MK, Uemura Y, Tan WN, et al.
    Environ Res, 2020 06;185:109458.
    PMID: 32247911 DOI: 10.1016/j.envres.2020.109458
    The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.5 wt% of bacterial consortium powder into CEW for 14-21 days. The peaks of BSFL biomass gained and growth rate were initially attained whilst feeding the BSFL with optimum fermented CEW. These were primarily attributed by the lowest energy loss via metabolic cost, i.e., as high as 22% of ingested optimum fermented CEW was effectively bioconverted into BSFL biomass. The harvested BSFL biomass was then found containing about 40 wt% of lipid, yielding 98% of fatty acid methyl esters of biodiesel upon transesterification. Subsequently, the protein content was also analyzed to be 0.32 mg, measured from 20 harvested BSFL with a corrected-chitin of approximately 8%. Moreover, the waste reduction index which represents the BSFL valorization potentiality was recorded at 0.31 g/day 20 BSFL. The benefit of fermenting CEW was lastly unveiled, accentuating the presence of surplus acid-producing bacteria. Thus, it was propounded the carbohydrates in CEW were rapidly hydrolysed during fermentation, releasing substantial organic acids and other nutrients to incite the BSFL assimilation into lipid for biodiesel and protein productions simultaneously.
  15. Liew CS, Yunus NM, Chidi BS, Lam MK, Goh PS, Mohamad M, et al.
    J Hazard Mater, 2022 Feb 05;423(Pt A):126995.
    PMID: 34482076 DOI: 10.1016/j.jhazmat.2021.126995
    The high investment cost required by modern treatment technologies of hazardous sewage sludge such as incineration and anaerobic digestion have discouraged their application by many developing countries. Hence, this review elucidates the status, performances and limitations of two low-cost methods for biological treatment of hazardous sewage sludge, employing vermicomposting and black soldier fly larvae (BSFL). Their performances in terms of carbon recovery, nitrogen recovery, mass reduction, pathogen destruction and heavy metal stabilization were assessed alongside with the mature anaerobic digestion method. It was revealed that vermicomposting and BSFL were on par with anaerobic digestion for carbon recovery, nitrogen recovery and mass reduction. Thermophilic anaerobic digestion was found superior in pathogen destruction because of its high operational temperature. Anaerobic digestion also had proven its ability to stabilize heavy metals, but no conclusive finding could confirm similar application from vermicomposting or BSFL treatment. However, the addition of co-substrates or biochar during vermicomposting or BSFL treatment may show synergistic effects in stabilizing heavy metals as demonstrated by anaerobic digestion. Moreover, vermicomposting and BSFL valorization had manifested their potentialities as the low-cost alternatives for treating hazardous sewage sludge, whilst producing value-added feedstock for biochemical industries.
  16. Ardo FM, Khoo KS, Ahmad Sobri MZ, Suparmaniam U, Ethiraj B, Anwar AF, et al.
    Environ Pollut, 2024 Apr 01;346:123648.
    PMID: 38408504 DOI: 10.1016/j.envpol.2024.123648
    Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 μmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links