Affiliations 

  • 1 Faculty of Pharmacy, International Islamic University Malaysia (IIUM), 25200, Kuantan, Malaysia
  • 2 Faculty of Pharmacy, International Islamic University Malaysia (IIUM), 25200, Kuantan, Malaysia. mdrahman@iium.edu.my
  • 3 Faculty of Pharmacy, Cyberjaya University College of Medical Sciences, 63000, Cyberjaya, Malaysia
  • 4 Drug Delivery and Novel Targeting Research Group, Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
Drug Deliv Transl Res, 2016 06;6(3):308-18.
PMID: 26817478 DOI: 10.1007/s13346-016-0278-y

Abstract

The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.