1. We believe that the ultimate goal of cardiovascular regulatory mechanisms is not the regulation of arterial blood pressure (BP), but the maintenance of tissue blood flows commensurate with metabolic requirements. Thus, elevated BP can potentially contribute to optimizing tissue blood flows under select circumstances; for example, when there are primary defects in autoregulation of tissue blood flows. 2. The hypothesis that a primary defect in autoregulation of tissue blood flows may be responsible for the development of hypertension is presented. It is argued that, in this context, at least part of the rise in BP may be reflexly driven by a 'metaboreflex', a homeostatic mechanism acting to regulate tissue blood flows. 3. We argue that in the context of primary defects in autoregulation of tissue blood flows, the ability to generate and sustain a hypertensive phenotype increases the lifespan of species (i.e. if it were not for this adaptive hypertensive phenotype, death due to circulatory failure would occur much earlier). 4. Experimental and clinical evidence that indirectly supports the hypothesis is reviewed briefly and a means for testing this hypothesis is suggested.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.