Displaying publications 1 - 20 of 116 in total

Abstract:
Sort:
  1. Loke P, Lim YAL
    Cell Host Microbe, 2016 10 12;20(4):417-419.
    PMID: 27736641 DOI: 10.1016/j.chom.2016.09.016
    Gut commensals profoundly affect host immunity and intestinal homeostasis, but the impact of commensal eukaryotic protozoans is poorly understood. In a recent Cell paper, Chudnovskiy et al. (2016) identify a commensal protozoan, Tritrichomonas musculis, that can enhance anti-bacterial defenses, but at the cost of increasing intestinal inflammation.
    Matched MeSH terms: Homeostasis/immunology
  2. Lee JW, Ong EBB
    Front Cell Dev Biol, 2020;8:619126.
    PMID: 33511130 DOI: 10.3389/fcell.2020.619126
    Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
    Matched MeSH terms: Homeostasis; Telomere Homeostasis
  3. Ibrahim MMA, Ghadzi SMS, Kjellsson MC, Karlsson MO
    CPT Pharmacometrics Syst Pharmacol, 2018 07;7(7):432-441.
    PMID: 29732710 DOI: 10.1002/psp4.12302
    In antidiabetic drug development, phase I studies usually involve short-term glucose provocations. Multiple designs are available for these provocations (e.g., meal tolerance tests (MTTs) and graded glucose infusions (GGIs)). With a highly nonlinear, complex system as the glucose homeostasis, the various provocations will contribute with different information offering a rich choice. Here, we investigate the most appropriate study design in phase I for several hypothetical mechanisms of action of a study drug. Five drug effects in diabetes therapeutic areas were investigated using six study designs. Power to detect drug effect was assessed using the likelihood ratio test, whereas precision and accuracy of the quantification of drug effect was assessed using stochastic simulation and estimations. An overall summary was developed to aid designing the studies of antihyperglycemic drug development using model-based analysis. This guidance is to be used when the integrated glucose insulin model is used, involving the investigated drug mechanisms of action.
    Matched MeSH terms: Homeostasis
  4. Thye KL, Wan Abdullah WMAN, Balia Yusof ZN, Wee CY, Ong-Abdullah J, Loh JY, et al.
    Sci Rep, 2022 Nov 16;12(1):19639.
    PMID: 36385165 DOI: 10.1038/s41598-022-21909-7
    Banana (Musa acuminata) is an important fruit crop and source of income for various countries, including Malaysia. To date, current agrochemical practice has become a disputable issue due to its detrimental effect on the environment. λ-carrageenan, a natural polysaccharide extracted from edible red seaweed, has been claimed to be a potential plant growth stimulator. Hence, the present study investigates the effects of λ-carrageenan on plant growth using Musa acuminata cv. Berangan (AAA). Vegetative growth such as plant height, root length, pseudostem diameter, and fresh weight was improved significantly in λ-carrageenan-treated banana plants at an optimum concentration of 750 ppm. Enhancement of root structure was also observed in optimum λ-carrageenan treatment, facilitating nutrients uptake in banana plants. Further biochemical assays and gene expression analysis revealed that the increment in growth performance was consistent with the increase of chlorophyll content, protein content, and phenolic content, suggesting that λ-carrageenan increases photosynthesis rate, protein biosynthesis, and secondary metabolites biosynthesis which eventually stimulate growth. Besides, λ-carrageenan at optimum concentration also increased catalase and peroxidase activities, which led to a significant reduction in hydrogen peroxide and malondialdehyde, maintaining cellular homeostasis in banana plants. Altogether, λ-carrageenan at optimum concentration improves the growth of banana plants via inducing metabolic processes, enhancing nutrient uptake, and regulation of cell homeostasis. Further investigations are needed to evaluate the effectiveness of λ-carrageenan on banana plants under field conditions.
    Matched MeSH terms: Homeostasis
  5. Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, et al.
    Food Chem, 2024 Jul 15;446:138739.
    PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739
    Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
    Matched MeSH terms: Homeostasis
  6. Balakrishnan S, Gopalakrishnan M, Alagesan M, Prakash ES
    Adv Physiol Educ, 2007 Mar;31(1):51-4.
    PMID: 17327583
    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial Pco(2) (Pa(CO(2))) or plasma HCO(3). A hypothetical situation in which the Pa(CO(2)) of arterial plasma is 80 mmHg and the plasma HCO(3) concentration is 48 mM is presented and analyzed to get over this misconception. As per the modified Henderson equation, the pH of arterial plasma would be 7.4; however, we explain that this may be associated with intracellular acidosis due to intracellular hypercapnia and that derangement of homeostasis is evident from the occurrence of respiratory depression and, eventually, coma in the patient described. This suggests that the ultimate goal of acid-base regulatory mechanisms is not just the maintenance of the pH of arterial plasma but the maintenance of the steady-state pH of intracellular fluid as well.
    Matched MeSH terms: Homeostasis/physiology
  7. Prakash A, Dhaliwal GK, Kumar P, Majeed AB
    Int J Neurosci, 2017 Feb;127(2):99-108.
    PMID: 27044501
    Alzheimer's disease (AD) is the most common form of dementia. Several hypotheses have been put forward to explain the basis of disease onset and progression. A complicated array of molecular events has been implicated in the pathogenesis of AD. It is attributed to a variety of pathological conditions that share similar critical processes, such as oxidative stress, proteinaceous aggregations, mitochondrial dysfunctions and energy failure. There is increasing evidence suggesting that metal homeostasis is dysregulated in the pathology of AD. Biometals play an important role in the normal body functioning but AD may be mediated or triggered by disproportion of metal ions leading to changes in critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. The link is multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper (Cu) and other trace metals. Their levels in the brain are found to be elevated in AD. In other neurodegenerative disorders, Cu, zinc, aluminum and manganese are involved. This paper is a review of recent advances of the role of metals in the pathogenesis and pathophysiology of AD and related neurodegenerative diseases.
    Matched MeSH terms: Homeostasis/physiology
  8. Nasir NF, Kannan TP, Sulaiman SA, Shamsuddin S, Azlina A, Stangaciu S
    Age (Dordr), 2015 Jun;37(3):9797.
    PMID: 26028466 DOI: 10.1007/s11357-015-9797-6
    The belief that beekeepers live longer than anyone else is present since ages. However, no research has been done to explore the longevity of life in beekeepers. Here, we investigated the telomere length in 30 male beekeepers and 30 male non-beekeepers and associated them with the longevity of life using Southern analysis of terminal restriction fragments (TRFs) generated by Hinf I/Rsa I digestion of human genomic DNA using TeloTAGGG Telomere Length Assay. Interestingly, we found that the telomere length of male beekeepers was significantly longer than those of male non-beekeepers with a p value of less than 0.05, suggesting that beekeepers may have longer life compared to non-beekeepers. We further found that the consumption of bee products for a long period and frequent consumption of bee products per day are associated with telomere length. An increase of year in consuming bee products is associated with a mean increase in telomere length of 0.258 kbp. In addition, an increase in frequency of eating bee products per day was also associated with a mean increase of 2.66 kbp in telomere length. These results suggested that bee products might play some roles in telomere length maintenance.
    Matched MeSH terms: Telomere Homeostasis/physiology*
  9. Moidu NA, A Rahman NS, Syafruddin SE, Low TY, Mohtar MA
    Heliyon, 2020 Sep;6(9):e05000.
    PMID: 33005802 DOI: 10.1016/j.heliyon.2020.e05000
    Anterior gradient-2 (AGR2) protein mediates the formation, breakage and isomerization of disulphide bonds during protein maturation in the endoplasmic reticulum (ER) and contributes to the homoeostasis of the secretory pathway. AGR2 promotes tumour development and metastasis and its elevated expression is almost completely restricted to malignant tumours. Interestingly, this supposedly ER-resident protein can be localised to other compartments of cancer cells and can also be secreted into the extracellular milieu. There are emerging evidences that describe the gain-of-function activities of the extracellular AGR2, particularly in cancer development. Here, we reviewed studies detailing the expression, pathological and physiological roles associated with AGR2 and compared the duality of localization, intracellular and extracellular, with special emphasis on the later. We also discussed the possible mechanisms of AGR2 secretion as well as deliberating the functional impacts of AGR2 in cancer settings. Last, we deliberate the current therapeutic strategies and posit the potential use AGR2, as a prognosis and diagnosis marker in cancer.
    Matched MeSH terms: Homeostasis
  10. Esa A, Connolly KD, Williams R, Archer CW
    Malays Orthop J, 2019 Mar;13(1):1-7.
    PMID: 31001376 DOI: 10.5704/MOJ.1903.012
    The role of extracellular vesicles (EV) in osteoarthritis has become the focus of much research. These vesicles were isolated from several cell types found in synovial joint including chondrocytes and synovium. As articular cartilage is an avascular tissue surrounded by synovial fluid, it is believed that EV might play a crucial role in the homeostasis of cartilage and also could hold key information in the pathogenesis of osteoarthritis. This is thought to be due to activation of pro-inflammatory factors leading to a catabolic state and degradation of cartilage. In addition, due to the nature of articular cartilage lacking neuronal innervation, knowledge of EV can contribute to identification of novel biomarkers in this debilitating condition. This can be either directly isolated from aspirate of synovial fluid or from peripheral blood. Finally, EVs are known to shuttle important signalling molecules which can be utilised as unique modality in transferring therapeutic compounds in a cell free manner.
    Matched MeSH terms: Homeostasis
  11. Gundamaraju R, Lu W, Manikam R
    Cancers (Basel), 2021 Jan 23;13(3).
    PMID: 33498743 DOI: 10.3390/cancers13030432
    The Warburg effect has immensely succored the study of cancer biology, especially in highlighting the role of mitochondria in cancer stemness and their benefaction to the malignancy of oxidative and glycolytic cancer cells. Mitochondrial genetics have represented a focal point in cancer therapeutics due to the involvement of mitochondria in programmed cell death. The mitochondrion has been well established as a switch in cell death decisions. The mitochondrion's instrumental role in central bioenergetics, calcium homeostasis, and translational regulation has earned it its fame in metastatic dissemination in cancer cells. Here, we revisit and review mechanisms through which mitochondria influence oncogenesis and metastasis by underscoring the oncogenic mitochondrion that is capable of transferring malignant capacities to recipient cells.
    Matched MeSH terms: Homeostasis
  12. Acosta ML, Mat Nor MN, Guo CX, Mugisho OO, Coutinho FP, Rupenthal ID, et al.
    Neural Regen Res, 2021 Mar;16(3):482-488.
    PMID: 32985469 DOI: 10.4103/1673-5374.290097
    Compounds that block the function of connexin and pannexin protein channels have been suggested to be valuable therapeutics for a range of diseases. Some of these compounds are now in clinical trials, but for many of them, the literature is inconclusive about the molecular effect on the tissue, despite evidence of functional recovery. Blocking the different channel types has distinct physiological and pathological implications and this review describes current knowledge of connexin and pannexin protein channels, their function as channels and possible mechanisms of the channel block effect for the latest therapeutic compounds. We summarize the evidence implicating pannexins and connexins in disease, considering their homeostatic versus pathological roles, their contribution to excesive ATP release linked to disease onset and progression.
    Matched MeSH terms: Homeostasis
  13. Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, et al.
    Food Chem, 2024 Apr 16;438:137994.
    PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994
    Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
    Matched MeSH terms: Homeostasis
  14. Rajendran P, Alzahrani AM, Hanieh HN, Kumar SA, Ben Ammar R, Rengarajan T, et al.
    J Cell Physiol, 2019 12;234(12):21485-21492.
    PMID: 31144309 DOI: 10.1002/jcp.28895
    Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.
    Matched MeSH terms: Homeostasis/genetics; Homeostasis/physiology
  15. Murugan AC, Karim MR, Yusoff MB, Tan SH, Asras MF, Rashid SS
    Pharm Biol, 2015 Aug;53(8):1087-97.
    PMID: 25630358 DOI: 10.3109/13880209.2014.959615
    CONTEXT: Polyphenol-rich marine macroalgae are gaining dietary importance due to their influence over diabetes mellitus and the role as a vital source of high-value nutraceuticals. Their assorted beneficial effects on human health include competitive inhibition of digestive enzymes, varying the activity of hepatic glucose-metabolizing enzymes, lowering the plasma glucose levels, and lipid peroxidation, delaying the aging process.

    OBJECTIVE: In this paper, we review the health beneficial effects of polyphenols and phlorotannins from brown seaweeds with special emphasis on their inhibitory effects on carbohydrate-metabolizing enzymes.

    METHODS: A survey of literature from databases such as Sciencedirect, Scopus, Pubmed, Springerlink, and Google Scholar from the year 1973 to 2013 was done to bring together the information relating to drug discovery from brown seaweeds as a source for diabetes treatment.

    RESULTS: Over the past two decades, 20 different bioactive polyphenols/phlorotannins have been isolated and studied from 10 different brown algae. Discussion of the positive effect on the inhibition of enzymes metabolizing carbohydrates in both in vitro and in vivo experiments are included.

    CONCLUSION: Despite the recent advancements in isolating bioactive compounds from seaweeds with potential health benefit or pharmaceutical behavior, studies on the polyphenol effectiveness on glucose homeostasis in human beings are very few in response to their functional characterization. Added research in this area is required to confirm the close connection of polyphenol rich seaweed-based diet consumption with glucose homeostasis and the exciting possibility of prescribing polyphenols to treat the diabetes pandemic.

    Matched MeSH terms: Homeostasis/drug effects*; Homeostasis/physiology
  16. Mazumdar P, Lau SE, Singh P, Takhtgahi HM, Harikrishna JA
    Physiol Mol Biol Plants, 2019 May;25(3):713-726.
    PMID: 31168234 DOI: 10.1007/s12298-019-00659-3
    Banana is often grown in coastal-regions, and while known for its sensitivity towards seawater, little is documented on the effect of sea-salt on the growth, physiology and metal homeostasis. Here we report that banana plantlets exposed to sea-salt at extreme (average seawater concentration; 52.7 dS m-1), severe (28.5 dS m-1) or moderate (10.2 dS m-1) salinity levels had reduced root length (2.0-6.0-fold), plant height (1.2-1.6-fold), leaf number (2.0-2.3-fold) and leaf area (3.3-4.0-fold) compared to control plantlets. Degradation of pigments (total chlorophyll: 1.3-12.3-fold, chlorophyll a: 1.3-9.2-fold; chlorophyll b: 1.3-6.9-fold lower and carotenoids: 1.4-3.7-fold lower) reflected vulnerability of photosystems to salt stress. Relative water content showed a maximum decrease of 1.5-fold in salt stress. MDA analysis showed sea-salt exposure triggers 2.3-3.5-fold higher lipid peroxidation. Metal content analysis showed a 73-fold higher Na value from roots exposed to extreme salinity compared to control plantlets. While phenotype was clearly affected, moderate salinity showed no significant alteration of macro (N, P, K and Ca) and micro (Fe, Mn and Cu) metal content. The antioxidant enzymes: SOD (3.2-fold), CAT (1.7-fold) and GR (6-fold) showed higher activity at moderate salinity level compared to control plantlets but lower activity at severe (SOD: 1.3-fold; CAT: 1.5-fold; GR: 2-fold lower) and extreme seawater salinity (SOD: 1.5; CAT: 1.9; GR: 1.3-fold lower). Mild changes in growth and physiology at sea-salt levels equivalent to moderate seawater flooding, indicate that banana will survive such flooding, while extreme seawater inundation will be lethal. This data provides a reference for future salinity-mediated work in banana.
    Matched MeSH terms: Homeostasis
  17. Mohammad Tariqur Rahman
    MyJurnal
    Host induced control of pathogens involves, but not limited to, withholding of essential transition metals as well as releasing the metals at a toxic level. Zinc is one of these transition elements that plays critical role in controlling the pathogens in that manner – a key mediator in nutritional immunity. A number of subcellular and molecular mecha-nisms such as transport and storage proteins are known to maintain Zn homeostasis and scuffle with the pathogens. Pathogenic bacteria also use a number of mechanisms to combat the scuffle and fight for the right amount of Zn for their survival and growth. From the host perspective, a “delicate” balance of Zn must be maintained for immune surveillance while making the level of Zn either to starve or to intoxicate the pathogens. Metallothionein (MT), a group of low molecular weight proteins, is well known for its Zn transport and storage ability and is expected to play an important role in that nutritional immunity. Zn homeostasis by MT to fight oral pathogens is not unexpected too. Periodontitis and dental caries are two most common oral diseases which are linked to the pathogenic carnival of opportunistic bacteria. Can those culprits be exterminated through nutritional immunity using MT? Or could it be - those human hosts who become the easy prey of those pathogens lack inducible expression of MT in their oral tissues? The synthesis or degradation of MT in response to invading pathogens in oral tissues, the human-MT medi-ated Zn homeostasis in response to infectious insult in oral tissues are evident. Nonetheless, the cross talk between MT and Zn in oral nutritional immunity is largely unknown.
    Matched MeSH terms: Homeostasis
  18. Wynn, Aye Aye, Myint, Ohnmar, Mya, Nang Khin
    MyJurnal
    Apoptosis is a programmed cell death which occurs following a variety of stimuli. Physiologically the process is important for morphogenesis of organs and homeostasis of different types of cells. Apoptotic cell death is responsible for a variety of pathologic states such as elimination of cell death in mutated cells, infected cells, tumour cells and transplant rejection well as the pathological atrophy. In this review, there is discussion about the control of apoptosis, detection methods of apoptosis, its association with infectious and non-communicable diseases. Intracellular microorganisms survive through inhibition of host cell apoptosis as well as they destroy the parenchymal cells causing impaired functions. It plays important role in tumourigenesis. There are possible therapeutic roles of drugs that modify apoptosis in human diseases.
    Matched MeSH terms: Homeostasis
  19. Schaefer N, Rotermund C, Blumrich EM, Lourenco MV, Joshi P, Hegemann RU, et al.
    J Neurochem, 2017 Jun 20.
    PMID: 28632905 DOI: 10.1111/jnc.14107
    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on doi: 10.1111/jnc.14102.
    Matched MeSH terms: Homeostasis
  20. Satirah Zainalabidin, Coats, Paul, Wadsworth, Roger M.
    MyJurnal
    Myogenic tone is the response of the vascular smooth muscle to an increase in intraluminal pressure with vasoconstriction and with vasodilation when the pressure is decreased. Such myogenic tone contributes a level of physiological basal tone in response to neurohumoral stimuli. In spite of myogenic tone discovery by Sir William Bayliss 100 years ago, questions still remain regarding the underlying signaling mechanism of the myogenic response. Studies have shown that increased intraluminal pressure or wall tension leads to membrane depolarization, voltage-operated calcium channel (VOCC), stretch-activated cation (SAC) channels, extracelullar matrix (ECM) and actin cytoskeleton. Recently, evidence has shown a potential role for reactive oxygen species (ROS) as a key signalling mediator in the genesis of myogenic tone. The identification of the primary mechanosensors in the initiation of pressure-dependent myogenic tone is essential as these components could be potential therapeutical targets in the future.
    Matched MeSH terms: Homeostasis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links