Affiliations 

  • 1 Department of Geographical Sciences, University of Maryland, College Park, Maryland, United States of America
PLoS One, 2019;14(2):e0210628.
PMID: 30785883 DOI: 10.1371/journal.pone.0210628

Abstract

Agricultural expansion is one of the leading causes of deforestation in the tropics and in Southeast Asia it is predominantly driven by large-scale production for international trade. Peninsular Malaysia has a long history of plantation agriculture and has been a predominantly resource-based economy where expanding plantations like those of oil palm continue to replace natural forests. Habitat loss from deforestation and expanding plantations threatens Malaysian biodiversity. Expanding industrial plantations have also been responsible for drainage and conversions of peatland forests resulting in release of large amounts of carbon dioxide. The demand for palm oil is expected to increase further and result in greater pressures on tropical forests. Given Malaysia's high biophysical suitability for oil palm cultivation, it is important to understand patterns of oil palm expansion to better predict forest areas that are vulnerable to future expansion. We study natural forest conversion to industrial oil palm in Peninsular Malaysia between 1988 and 2012 to identify determinants of recent oil palm expansion using logistic regression and hierarchical partitioning. Using maps of recent conversions and remaining forests, we characterize agro-environmental suitability and accessibility for the past and future conversions. We find that accessibility to previously existing plantations is the strongest determinant of oil palm expansion and is significant throughout the study period. Almost all (> 99%) of the forest loss between 1988 and 2012 that has been converted to industrial oil palm plantations is within 1 km from oil palm plantations that have been established earlier. Although most forest conversions to industrial oil palm have been in areas of high biophysical suitability, there has been an increase in converted area in regions with low oil palm suitability since 2006. We find that reduced suitability does not necessarily restrict conversions to industrial oil palm in the region; however, lack of access to established plantations does.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.