Displaying publications 1 - 20 of 365 in total

  1. Raes N, Cannon CH, Hijmans RJ, Piessens T, Saw LG, van Welzen PC, et al.
    Proc Natl Acad Sci U S A, 2014 Nov 25;111(47):16790-5.
    PMID: 25385612 DOI: 10.1073/pnas.1403053111
    The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present.
    Matched MeSH terms: Forests*
  2. Drewer J, Leduning MM, Purser G, Cash JM, Sentian J, Skiba UM
    Environ Sci Pollut Res Int, 2021 Jun;28(24):31792-31802.
    PMID: 33611733 DOI: 10.1007/s11356-021-13052-z
    Regional estimates of VOC fluxes focus largely on emissions from the canopy and omit potential contributions from the forest floor including soil, litter and understorey vegetation. Here, we measured monoterpene emissions every 2 months over 2 years from logged tropical forest and oil palm plantation floor in Malaysian Borneo using static flux chambers. The main emitted monoterpenes were α-pinene, β-pinene and d-limonene. The amount of litter present was the strongest indicator for higher monoterpene fluxes. Mean α-pinene fluxes were around 2.5-3.5 μg C m-2 h-1 from the forest floor with occasional fluxes exceeding 100 μg C m-2 h-1. Fluxes from the oil palm plantation, where hardly any litter was present, were lower (on average 0.5-2.9 μg C m-2 h-1) and only higher when litter was present. All other measured monoterpenes were emitted at lower rates. No seasonal trends could be identified for all monoterpenes and mean fluxes from both forest and plantation floor were ~ 100 times smaller than canopy emission rates reported in the literature. Occasional spikes of higher emissions from the forest floor, however, warrant further investigation in terms of underlying processes and their contribution to regional scale atmospheric fluxes.
    Matched MeSH terms: Forests*
  3. Kiew R
    PhytoKeys, 2013.
    PMID: 24198708 DOI: 10.3897/phytokeys.25.5178
    Ridleyandra chuana, a new species of Gesneriaceae, is described and illustrated. It is endemic in Peninsular Malaysia and known from two small and restricted populations in montane forest. Its conservation status is assessed as vulnerable.
    Matched MeSH terms: Forests
  4. Li QY, Zhang ZW, Tao JP, Liu JH, Yong XH, Meng XF, et al.
    Sains Malaysiana, 2014;43:1119-1125.
    Due to widespread distribution of dwarf bamboo, Chimonobambusa utilis, in mountain environment, the effects of elevation (low and high) and canopy condition (forest understorey and forest edge) on the clonal morphology and leaf fluctuating asymmetry were investigated in an evergreen broadleaves forest of Jinfo Mountain Nature Reserve. Elevation and canopy condition were significant for all morphological traits of C. utilis (except for effect of elevation on node number under branch). Traits of clonal morphology such as height, basal diameter, height under branch tended to be higher in forest understorey and in high elevation. Forest understorey in high elevation was favour of shooting number. Interaction of elevation and canopy conditions had a significant effect on growth of node. Single leaf area (SLA) and all indices of fluctuating asymmetry were significantly higher in low elevation than that in high elevation of forest understorey. Thus, elevation and canopy condition formed environmental stress that lead to the adaptation of morphological traits and leaf fluctuating asymmetry of C. utilis populations to mountain forest habitats.
    Matched MeSH terms: Forests
  5. Goessens A, Satyanarayana B, Van der Stocken T, Quispe Zuniga M, Mohd-Lokman H, Sulong I, et al.
    PLoS One, 2014;9(8):e105069.
    PMID: 25144689 DOI: 10.1371/journal.pone.0105069
    Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia is under systematic management since 1902 and still considered as the best managed mangrove forest in the world. The present study on silvimetrics assessed the ongoing MMFR forest management, which includes a first thinning after 15 years, a second thinning after 20 years and clear-felling of 30-year old forest blocks, for its efficiency and productivity in comparison to natural mangroves. The estimated tree structural parameters (e.g. density, frequency) from three different-aged mangrove blocks of fifteen (MF15), twenty (MF20), and thirty (MF30) years old indicated that Bruguiera and Excoecaria spp. did not constitute a significant proportion of the vegetation (<5%), and hence the results focused majorly on Rhizophora apiculata. The density of R. apiculata at MF15, MF20 and MF30 was 4,331, 2,753 and 1,767 stems ha(-1), respectively. In relation to ongoing practices of the artificial thinnings at MMFR, the present study suggests that the first thinning could be made earlier to limit the loss of exploitable wood due to natural thinning. In fact, the initial density at MF15 was expected to drop down from 6,726 to 1,858 trees ha(-1) before the first thinning. Therefore the trees likely to qualify for natural thinning, though having a smaller stem diameter, should be exploited for domestic/commercial purposes at an earlier stage. The clear-felling block (MF30) with a maximum stem diameter of 30 cm was estimated to yield 372 t ha(-1) of the above-ground biomass and suggests that the mangrove management based on a 30-year rotation is appropriate for the MMFR. Since Matang is the only iconic site that practicing sustainable wood production, it could be an exemplary to other mangrove locations for their improved management.
    Matched MeSH terms: Forests*
  6. Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, et al.
    Trends Ecol Evol, 2017 06;32(6):438-451.
    PMID: 28359572 DOI: 10.1016/j.tree.2017.02.020
    Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO2, water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world.
    Matched MeSH terms: Forests*
  7. Russo SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, et al.
    Nat Ecol Evol, 2021 02;5(2):174-183.
    PMID: 33199870 DOI: 10.1038/s41559-020-01340-9
    Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth-mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth-mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth-mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure.
    Matched MeSH terms: Forests*
  8. Pavitra SP, Low VL, Tan TK, Lim YAL, Ya'cob Z
    Acta Trop, 2020 Feb;202:105275.
    PMID: 31747545 DOI: 10.1016/j.actatropica.2019.105275
    Blackflies (Diptera: Simuliidae) are ecologically and medically important insects but they have been understudied in Malaysia. Accordingly, a study on the temporal variation in diversity and community structure of preimaginal blackflies was conducted for the first time in Malaysia. A total of 865 preimaginal blackflies were collected in 120 samplings from five streams across three monsoon seasons from February 2018 until January 2019. Ten species were recorded and most frequently collected species were Simulium cheongi, Simulium vanluni and Simulium jeffreyi. Relatively common species were Simulium roslihashimi, Simulium tani complex and Simulium trangense. No significant changes of rainfall was observed between three monsoon seasons as well as the seasons with species and physiochemical parameters except acidity (pH) (P 20%) indicated that S. vanluni and S. jeffreyi were commonly associated with wider, deeper and fast-flowing streams with low conductivity and larger streambed particle. In contrast, S. cheongi was associated with smaller, slower and small streambed particle. This first extensive bimonthly study has uncovered the species community structure as well as the changes of stream physicochemical parameters over time although they were not greatly and significantly influenced by the monsoon seasons. Species distribution, richness and abundance, however, were highly determined by the stream width, depth and velocity, therefore, were vital in shaping diversity and community structure of preimaginal blackflies.
    Matched MeSH terms: Forests*
  9. Dullah H, Malek MA, Omar H, Mangi SA, Hanafiah MM
    Environ Sci Pollut Res Int, 2021 Aug;28(32):44264-44276.
    PMID: 33847888 DOI: 10.1007/s11356-021-13833-6
    Deforestation and forest degradation are among the leading global concerns, as they could reduce the carbon sink and sequestration potential of the forest. The impoundment of Kenyir River, Hulu Terengganu, Malaysia, in 1985 due to the development of hydropower station has created a large area of water bodies following clearance of forested land. This study assessed the loss of forest carbon due to these activities within the period of 37 years, between 1972 and 2019. The study area consisted of Kenyir Lake catchment area, which consisted mainly of forests and the great Kenyir Lake. Remote sensing datasets have been used in this analysis. Satellite images from Landsat 1-5 MSS and Landsat 8 OLI/TRIS that were acquired between the years 1972 and 2019 were used to classify land uses in the entire landscape of Kenyir Lake catchment. Support vector machine (SVM) was adapted to generate the land-use classification map in the study area. The results show that the total study area includes 278,179 ha and forest covers dominated the area for before and after the impoundment of Kenyir Lake. The assessed loss of carbon between the years 1972 and 2019 was around 8.6 million Mg C with an annual rate of 0.36%. The main single cause attributing to the forest loss was due to clearing of forest for hydro-electric dam construction. However, the remaining forests surrounding the study area are still able to sequester carbon at a considerable rate and thus balance the carbon dynamics within the landscapes. The results highlight that carbon sequestration scenario in Kenyir Lake catchment area shows the potential of the carbon sink in the study area are acceptable with only 17% reduction of sequestration ability. The landscape of the study area is considered as highly vegetated area despite changes due to dam construction.
    Matched MeSH terms: Forests*
  10. Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, et al.
    Ecol Lett, 2018 07;21(7):989-1000.
    PMID: 29659115 DOI: 10.1111/ele.12964
    Topography is a key driver of tropical forest structure and composition, as it constrains local nutrient and hydraulic conditions within which trees grow. Yet, we do not fully understand how changes in forest physiognomy driven by topography impact other emergent properties of forests, such as their aboveground carbon density (ACD). Working in Borneo - at a site where 70-m-tall forests in alluvial valleys rapidly transition to stunted heath forests on nutrient-depleted dip slopes - we combined field data with airborne laser scanning and hyperspectral imaging to characterise how topography shapes the vertical structure, wood density, diversity and ACD of nearly 15 km2 of old-growth forest. We found that subtle differences in elevation - which control soil chemistry and hydrology - profoundly influenced the structure, composition and diversity of the canopy. Capturing these processes was critical to explaining landscape-scale heterogeneity in ACD, highlighting how emerging remote sensing technologies can provide new insights into long-standing ecological questions.
    Matched MeSH terms: Forests*
  11. Rajpar MN, Rajpar AH, Zakaria M
    Braz J Biol, 2022;84:e256160.
    PMID: 35137773 DOI: 10.1590/1519-6984.256160
    Riverine forests are unique and highly significant ecosystems that are globally important for diverse and threatened avian species. Apart from being a cradle of life, it also serves as a gene pool that harbors a variety of flora and fauna species (repeated below). Despite the fact, this fragile ecosystem harbored avian assemblages; it is now disappearing daily as a result of human activity. Determining habitat productivity using bird species is critical for conservation and better management in the future. Multiple surveys were conducted over a 15-month period, from January to March 2019, using the distance sampling point count method. A total of 250 point count stations were fixed systematically at 300 m intervals. In total, 9929 bird individuals were recorded, representing 57 species and 34 families. Out of 57 bird species, two were vulnerable, one was data deficient, one was nearly threatened, and the remaining 53 species were of least concern. The Eurasian Collard Dove - Streptopelia decaocto (14.641 ± 2.532/ha), White-eared Bulbul - Pycnonotus leucotis (13.398 ± 4.342/ha) and Common Babbler - Turdoides caudata (10.244 ± 2.345/ha) were the three first plenteous species having higher densities. However, the densities of three species, i.e., Lesser Whitethroat - Sylvia curruca, Gray Heron - Ardea cinerea and Pallas Fish Eagle - Haliaeetus leucoryphus, were not analyzed due to the small sample size. The findings of diversity indices revealed that riverine forest has harbored the diverse avian species that are uniformly dispersed across the forest. Moreover, recording the ten foraging guilds indicated that riverine forest is rich in food resources. In addition, the floristic structure importance value index results indicated that riverine forest is diverse and rich in flora, i.e. trees, shrubs, weeds and grass, making it an attractive and productive habitat for bird species.
    Matched MeSH terms: Forests*
  12. Chen ZX, Lei Q, He RL, Zhang ZF, Chowdhury AJ
    Saudi J Biol Sci, 2016 Jan;23(1):S142-7.
    PMID: 26858559 DOI: 10.1016/j.sjbs.2015.09.025
    In this review, the characteristics and applications of structural laminated veneer lumber made from planted forest wood is introduced, and its preparation is explained, including various tree species and slab qualities, treatments for multiple effects and reinforced composites. The relevant factors in the bonding technology and pressing processes as well as the mechanical properties, research direction and application prospects of structural laminated veneer lumber made from planted forest wood are discussed.
    Matched MeSH terms: Forests
  13. Ummul-Nazrah AR, Mohd Hairul MA, Kamin I, Kiew R, Ong PT
    PhytoKeys, 2018.
    PMID: 29780269 DOI: 10.3897/phytokeys.98.23903
    Vatica najibiana Ummul-Nazrah (Dipterocarpaceae), from the Relai Forest Reserve, Gua Musang, Kelantan and Gua Tanggang, Merapoh, Pahang, is described and illustrated. This species is Endangered and known from small populations restricted to two isolated karst limestone hills. The type locality, Relai Forest Reserve limestone, is currently under threat from encroaching oil palm plantations and ongoing logging, which, if it continues, will threaten the Kelantan population with extinction. The morphology of V. najibiana and the similar V. odorata subsp. odorata and V. harmandiana is compared.
    Matched MeSH terms: Forests
  14. Dančák M, Hroneš M, Sochor M, Sochorová Z
    PLoS One, 2018;13(10):e0203443.
    PMID: 30281609 DOI: 10.1371/journal.pone.0203443
    Thismia kelabitiana, a new unique species from the Sarawak state of Malaysia in the island of Borneo is described and illustrated. This new species is not similar to any species of Thismia described so far especially by having a unique form of mitre and outer perianth lobes deeply divided into 8-10 acute lobes and forming striking fringe around perianth tube opening. The species appears to be critically endangered due to ongoing logging activities in the region. It may potentially become a surrogate species for lower montane forests of the region and thus help protect them against further destruction.
    Matched MeSH terms: Forests
  15. Zhang BS, Zhang F
    Zookeys, 2018.
    PMID: 30344434 DOI: 10.3897/zookeys.789.24261
    Three new species of the genus Asceua Thorell, 1887, from the natural forests of Malaysia, are described as Asceuabifurcasp. n. (♂♀), A.curvasp. n. (♂), and A.trimaculatasp. n. (♀). The genus Asceua is reported from Malaysia for the first time.
    Matched MeSH terms: Forests
  16. Qie L, Lewis SL, Sullivan MJP, Lopez-Gonzalez G, Pickavance GC, Sunderland T, et al.
    Nat Commun, 2018 01 19;9(1):342.
    PMID: 29352254 DOI: 10.1038/s41467-018-02920-x
    The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article.
    Matched MeSH terms: Forests
  17. Yunoh SM, Dzulkafly Z
    PhytoKeys, 2017.
    PMID: 29362547 DOI: 10.3897/phytokeys.89.20344
    Ridleyandra merohmerea, a new species of Gesneriaceae, is described and illustrated. It is endemic in Peninsular Malaysia and known from a few populations along the Tuang River in the lowland dipterocarp forest of the Ulu Galas Forest Reserve in Kelantan, Peninsular Malaysia. Its conservation status is assessed as Critically Endangered.
    Matched MeSH terms: Forests
  18. Zhang BS, Zhang F
    Zootaxa, 2019 Mar 20;4568(2):zootaxa.4568.2.2.
    PMID: 31715856 DOI: 10.11646/zootaxa.4568.2.2
    Four new species of the genus Mallinella Strand, 1906, from the natural forests of Malaysia, are described as Mallinella bicanaliculata sp. n. (♂♀), M. calautica sp. n. (♂♀), M. laxa sp. n. (♂♀), and M. obliqua sp. n. (♂♀). The four new species belong to four species groups and were collected from the forest litter in Sabah state by sieving.
    Matched MeSH terms: Forests
  19. Zhen L, Zhang ZW, Wang YJ, Wang PC, Xu YR, Zhou ZX
    Sains Malaysiana, 2012;41:1495-1501.
    Relationship between understory plant diversity and anthropogenic disturbances in urban forests of Wuhan City, Central China, was analyzed by diversity analysis and detrended canonical correspondence analysis (DCCA). The results showed that: understory species diversity was higher in suburban area than in urban area. From forest center to edge, species diversity of Luojia hill, Shizi hill and Maan hill forests gradually increased, however, that of Hong hill gradually decreased. Anthropogenic disturbances gradient resulted from visitors flowrate, shrub coverage, aspect and adjacent land types had significant effects on species diversity of shrub and herb layers in urban forests. High anthropogenic disturbances might increase similar non-native herb species in urban area and low disturbances might promote co-existence of wood species in suburban area. Further analysis on types of anthropogenic disturbances and plant functional groups in urban-suburban gradient should be taken into a consideration.
    Matched MeSH terms: Forests
  20. Shukurov E, Nabiyev M, ALI-ZADE V
    Sains Malaysiana, 2013;42:1467-1471.
    The purpose of the investigation was to study the early spring plant diversity distributed in different vegetation types and their life forms, in relation to different altitudes. The investigation was carried out in accordance with itinerary method beginning from the shoreline up to the mountain. The results showed that 100% of the totally collected plants from the desert vegetation were therophytes; 100% from steppe vegetation were geophytes; 50 from forest were geophytes and the other 50% were hemicryptophytes. It is concluded that the life forms of early spring plants change depending on the altitude corresponding to changes in the air temperature as well as climatic and edaphic factors.
    Matched MeSH terms: Forests
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links