With the increasing clinical use of titanium dioxide nanoparticles (nano-TiO2), a better understanding of their safety in the human use is critical. The present study aims to review the potential application of nano-TiO2 as targeted cancer therapy based on their toxicity risk which highly dependent on their physio-chemical properties. Methods: This review was performed based on PRISMA-P protocol that begin with literature searching on the selected databases; PubMed, Springer Link, Science Direct and general search engine; Google Scholar from 2013 to 2018. Studies retrieved by the pre-determined keywords (titanium dioxide nanoparticles, toxicity, genotoxicity, cytotoxicity, targeted cancer therapy) that assessed toxicity risk of nano-TiO2 in cancer therapeutics were included. Results: The search retrieved 252 articles. Assessment of eligibility by application of inclusion criteria yielded 14 articles. Nano-TiO2 induced cytotoxicity and genotoxicity in dose and time-dependent manner killing the cancerous cells. All studies used primary particles size < 100 nm with mean of 39.38 and standard deviation of 30.47 which is lower than the mean denoting diameter distribution from selected studies are concentrated from the mean. Conclusion: This review suggest that TiO2 nanoparticles can be considered as an ideal candidate for drug-delivery vehicle for targeted cancer therapy by specifically tailored their physio-chemical properties of this nanoparticles according to desired target site and functions to ensure its optimal efficacy.