Affiliations 

  • 1 Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman. Electronic address: aalmamun@squ.edu.om
  • 2 Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman; Process Engineering Department, International Maritime College, Sohar, Oman
  • 3 Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
  • 4 Department of Civil and Environmental Engineering, Manhattan College, 4513 Manhattan College Parkway, Riverdale, NY, 10471, USA
  • 5 Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia; Biofuel Research Team (BRTeam), Karaj, Iran; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Extension, and Education Organization (AREEO), Karaj, Iran; Faculty of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • 6 Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries Research (Akuatrop) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
Environ Res, 2020 04;183:109273.
PMID: 32105886 DOI: 10.1016/j.envres.2020.109273

Abstract

Developing cost-effective technology for treatment of sewage and nitrogen-containing groundwater is one of the crucial challenges of global water industries. Microbial fuel cells (MFCs) oxidize organics from sewage by exoelectrogens on anode to produce electricity while denitrifiers on cathode utilize the generated electricity to reduce nitrogen from contaminated groundwater. As the exoelectrogens are incapable of oxidizing insoluble, polymeric, and complex organics, a novel integration of an anaerobic sequencing batch reactor (ASBR) prior to the MFC simultaneously achieve hydrolytic-acidogenic conversion of complex organics, boost power recovery, and remove Carbon/Nitrogen (C/N) from the sewage and groundwater. The results obtained revealed increases in the fractions of soluble organics and volatile fatty acids in pretreated sewage by 52 ± 19% and 120 ± 40%, respectively. The optimum power and current generation with the pretreated sewage were 7.1 W m-3 and 45.88 A m-3, respectively, corresponding to 8% and 10% improvements compared to untreated sewage. Moreover, the integration of the ASBR with the biocathode MFC led to 217% higher carbon and 136% higher nitrogen removal efficiencies compared to the similar system without ASBR. The outcomes of the present study represent the promising prospects of using ASBR pretreatment and successive utilization of solubilized organics in denitrifying biocathode MFCs for simultaneous energy recovery and C/N removal from both sewage and nitrate nitrogen-contaminated groundwater.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.