Affiliations 

  • 1 Infectious Disease Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, Kuala Lumpur, Malaysia
  • 2 Low Risk COVID-19 Quarantine and Treatment Centre, MAEPS, Selangor, Malaysia
Clin Infect Dis, 2021 05 04;72(9):e352-e356.
PMID: 32761244 DOI: 10.1093/cid/ciaa1156

Abstract

BACKGROUND: The ideal severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2) testing method would be accurate and also be patient-performed to reduce exposure to healthcare workers. The aim of this study was to compare patient-performed testing based on a morning saliva sample with the current standard testing method, healthcare worker-collected sampling via a nasopharyngeal swab (NPS).

METHODS: This was a prospective single center study which recruited 217 asymptomatic adult male participants in a coronavirus disease 2019 (COVID-19) quarantine center who had tested positive for SARS-CoV-2 8-10 days prior to isolation. Paired NPS and saliva specimens were collected and processed within 5 hours of sample collection. Real time reverse transcription polymerase chain reaction (RT-PCR) targeting Envelope (E) and RNA-dependent RNA polymerase (RdRp) genes was performed and the results were compared.

RESULTS: Overall, 160 of the 217 (74%) participants tested positive for COVID-19 based on saliva, NPS, or both testing methods. The detection rate for SARS-CoV-2 was higher in saliva compared to NPS testing (93.1%, 149/160 vs 52.5%, 84/160, P < .001). The concordance between the 2 tests was 45.6% (virus was detected in both saliva and NPS in 73/160), whereas 47.5% were discordant (87/160 tested positive for 1 whereas negative for the other). The cycle threshold (Ct) values for E and RdRp genes were significantly lower in saliva specimens compared to NP swab specimens.

CONCLUSIONS: Our findings demonstrate that saliva is a better alternative specimen for detection of SARS-CoV-2. Taking into consideration, the simplicity of specimen collection, shortage of PPE and the transmissibility of the virus, saliva could enable self-collection for an accurate SARS-CoV-2 surveillance testing.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.