METHODS: The GYTS covered a total of 2,242 Bangladeshi, 1,444 Nepalese and 1,377 Sri-Lankan youths aged 13-15 years. They represented response rates of 88.9%, 94.6%, and 85.0% for the three countries, respectively. Socioeconomic, environmental, motivating, and programmatic predictors of TC were examined using cross tabulations and logistic regressions.
RESULTS: Prevalence of TC was 6.9% (9.1% in males, 5.1% in females) in Bangladesh, 9.4% (13.2% in males, 5.3% in females) in Nepal and 9.1% (12.4% in males, 5.8% in females) in Sri Lanka. The average tobacco initiation age was 9.6, 10.24 and 8.61 years, respectively. Cross tabulations showed that gender, smoking among parents and friends, exposure to smoking at home and public places, availability of free tobacco were significantly (P < 0.001) associated with TC in all three countries. The multivariable analysis [odds ratio (95% confidence interval)] indicated that the common significant predictors for TC in the three countries were TC among friends [1.9 (1.30-2.89) for Bangladesh, 4.10 (2.64-6.38) for Nepal, 2.34 (1.36-4.02) for Sri Lanka], exposure to smoking at home [1.7 (1.02-2.81) for Bangladesh, 1.81 (1.08-2.79) for Nepal, 3.96 (1.82-8.62) for Sri Lanka], exposure to smoking at other places [2.67 (1.59-4.47) for Bangladesh, 5.22 (2.76-9.85) for Nepal, 1.76 (1.05-2.88) for Sri Lanka], and the teaching of smoking hazards in schools [0.56 (0.38-0.84) for Bangladesh, 0.60 (0.41-0.89) for Nepal, 0.58 (0.35-0.94) for Sri Lanka].
CONCLUSIONS: An understanding of the influencing factors of youth TC provides helpful insights for the formulation of tobacco control policies in the South-Asian region.
METHODS: Graphite furnace atomic absorption spectrometry (GF-AAS) was used to evaluate six digestion methods, (1) nitric acid, (2) nitric acid overnight, (3) nitric acid-hydrogen peroxide, (4) nitric-perchloric acid, (5) sulfuric acid, and (6) dry ashing, to determine the most suitable digestion method for the determination of heavy metals in the samples.
RESULTS: The concentration ranges of Cd, Pb, As and Se in fresh tea leaves were from 0.03-0.13, 0.19-2.06 and 0.47-1.31 µg/g, respectively while processed tea contained heavy metals at different concentrations: Cd (0.04-0.16 µg/g), Cr (0.45-10.73 µg/g), Pb (0.07-1.03 µg/g), As (0.89-1.90 µg/g) and Se (0.21-10.79 µg/g). Moreover, the soil samples of tea plantations also showed a wide range of concentrations: Cd (0.11-0.45 µg/g), Pb (2.80-66.54 µg/g), As (0.78-4.49 µg/g), and Se content (0.03-0.99 µg/g). Method no. 2 provided sufficient time to digest the tea matrix and was the most efficient method for recovering Cd, Cr, Pb, As and Se. Methods 1 and 3 were also acceptable and can be relatively inexpensive, easy and fast. The heavy metal transfer factors in the investigated soil/tea samples decreased as follows: Cd > As > Se > Pb.
CONCLUSION: Overall, the present study gives current insights into the heavy metal levels both in soils and teas commonly consumed in Bangladesh.