Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Jelip J, Mathew GG, Yusin T, Dony JF, Singh N, Ashaari M, et al.
    Tuberculosis (Edinb), 2004;84(1-2):19-23.
    PMID: 14670342
    Tuberculosis (TB) is one of the main public health problems in Sabah; 30% of the total number of TB cases reported in Malaysia every year occur in Sabah. The average incidence of TB among health care workers over the past 5 years is 280.4 per 100,000 population (1, Annual Report of Sabah State TB Control Programme, 1998). At present, there are no specific measures for the prevention of TB transmission in health care facilities. A case-control study was conducted among health care workers in Sabah in 2000-2001. Cases were health care workers with TB diagnosed between January 1990 and June 2000. Controls were health care workers without TB and working in the same facility as cases during the disease episode. The study attempted to identify risk factors for TB among the study population. Data were collected through structured interviews and review of patients' records. The notification rate of TB among health care workers was significantly higher than that to the general population (Z=4.893, p<0.01). The average notification rate of TB among health care workers over the last 5 years was two times higher than in the general population (280.4/100,000 compared to 153.9/100,000). Regression results showed that ethnicity, designation, family contact and TB related knowledge did not significantly contribute to the risk of contracting TB in this study. However, after controlling for the above factors, age, gender, history of TB contact outside the workplace (other than family contact), duration of service and failure to use respiratory protection when performing high-risk procedures, were the main risk factors of TB among health care workers. This study succeeded in identifying some of the risk factors of TB among health care workers. We managed to include the large ratio of controls to case (3:1) and those cases spanned over a period of 10 years. However, the findings from the study have to be applied with caution due to the limitations of this study, which include recall bias, dropouts, and small sample size. Based on the study findings, we recommend that health care workers in the first 10 years of service should take extra precautions, such as using respiratory protection when performing procedures that are considered to be of high risk with respect to TB infection. They should also undergo TB screening at least once every 2 years and, if symptomatic, offered prophylactic treatment. The Respiratory Protection Programme should be fully implemented to help reduce the risk of TB among health care workers in Sabah.
  2. William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, et al.
    Emerg Infect Dis, 2011 Jul;17(7):1248-55.
    PMID: 21762579 DOI: 10.3201/eid1707.101017
    The simian parasite Plasmodium knowlesi causes severe human malaria; the optimal treatment remains unknown. We describe the clinical features, disease spectrum, and response to antimalarial chemotherapy, including artemether-lumefantrine and artesunate, in patients with P. knowlesi malaria diagnosed by PCR during December 2007-November 2009 at a tertiary care hospital in Sabah, Malaysia. Fifty-six patients had PCR-confirmed P. knowlesi monoinfection and clinical records available for review. Twenty-two (39%) had severe malaria; of these, 6 (27%) died. Thirteen (59%) had respiratory distress; 12 (55%), acute renal failure; and 12, shock. None experienced coma. Patients with uncomplicated disease received chloroquine, quinine, or artemether-lumefantrine, and those with severe disease received intravenous quinine or artesunate. Parasite clearance times were 1-2 days shorter with either artemether-lumefantrine or artesunate treatment. P. knowlesi is a major cause of severe and fatal malaria in Sabah. Artemisinin derivatives rapidly clear parasitemia and are efficacious in treating uncomplicated and severe knowlesi malaria.
  3. Norahmad NA, Abdullah NR, Yaccob N, Jelip J, Dony JF, Ruslan KF, et al.
    PMID: 22299399
    Chloroquine (CQ) remains the first line drug for the prevention and treatment of malaria in Malaysia in spite of the fact that resistance to CQ has been observed in Malaysia since the 1960s. CQ-resistance is associated with various mutations in pfcrt, which encodes a putative transporter located in the digestive vacuolar membrane of P. falciparum. Substitution of lysine (K) to threonine (T) at amino acid 76 (K76T) in pfcrt is the primary genetic marker conferring resistance to CQ. To determine the presence of T76 mutation in pfcrt from selected areas of Kalabakan, Malaysia 619 blood samples were screened for P. falciparum, out of which 31 were positive. Blood samples were collected on 3 MM Whatman filter papers and DNA was extracted using QIAmp DNA mini kit. RFLP-PCR for the detection of the CQ-resistant T76 and sensitive K76 genotype was carried out. Twenty-five samples were shown to have the point mutation in pfcrt whereas the remaining samples were classified as CQ-sensitive (wild-type). In view of the fact that CQ is the first line anti-malarial drug in Malaysia, this finding could be an important indication that treatment with CQ may no longer be effective in the future.
  4. Abdullah NR, Barber BE, William T, Norahmad NA, Satsu UR, Muniandy PK, et al.
    PLoS One, 2013;8(12):e82553.
    PMID: 24358203 DOI: 10.1371/journal.pone.0082553
    Despite significant progress in the control of malaria in Malaysia, the complex transmission dynamics of P. vivax continue to challenge national efforts to achieve elimination. To assess the impact of ongoing interventions on P. vivax transmission dynamics in Sabah, we genotyped 9 short tandem repeat markers in a total of 97 isolates (8 recurrences) from across Sabah, with a focus on two districts, Kota Marudu (KM, n = 24) and Kota Kinabalu (KK, n = 21), over a 2 year period. STRUCTURE analysis on the Sabah-wide dataset demonstrated multiple sub-populations. Significant differentiation (F ST  = 0.243) was observed between KM and KK, located just 130 Km apart. Consistent with low endemic transmission, infection complexity was modest in both KM (mean MOI  = 1.38) and KK (mean MOI  = 1.19). However, population diversity remained moderate (H E  = 0.583 in KM and H E  = 0.667 in KK). Temporal trends revealed clonal expansions reflecting epidemic transmission dynamics. The haplotypes of these isolates declined in frequency over time, but persisted at low frequency throughout the study duration. A diverse array of low frequency isolates were detected in both KM and KK, some likely reflecting remnants of previous expansions. In accordance with clonal expansions, high levels of Linkage Disequilibrium (I A (S) >0.5 [P<0.0001] in KK and KM) declined sharply when identical haplotypes were represented once (I A (S)  = 0.07 [P = 0.0076] in KM, and I A (S) = -0.003 [P = 0.606] in KK). All 8 recurrences, likely to be relapses, were homologous to the prior infection. These recurrences may promote the persistence of parasite lineages, sustaining local diversity. In summary, Sabah's shrinking P. vivax population appears to have rendered this low endemic setting vulnerable to epidemic expansions. Migration may play an important role in the introduction of new parasite strains leading to epidemic expansions, with important implications for malaria elimination.
  5. Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al.
    Malar J, 2013;12:198.
    PMID: 23758930 DOI: 10.1186/1475-2875-12-198
    Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
  6. William T, Rahman HA, Jelip J, Ibrahim MY, Menon J, Grigg MJ, et al.
    PLoS Negl Trop Dis, 2013;7(1):e2026.
    PMID: 23359830 DOI: 10.1371/journal.pntd.0002026
    BACKGROUND: The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time.

    METHODS: Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992-2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity.

    RESULTS: From 1992-2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈ 100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly.

    CONCLUSIONS: A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence.

  7. Grigg MJ, William T, Drakeley CJ, Jelip J, von Seidlein L, Barber BE, et al.
    BMJ Open, 2014 Aug 22;4(8):e006004.
    PMID: 25149186 DOI: 10.1136/bmjopen-2014-006004
    INTRODUCTION: Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission.

    METHODS AND ANALYSIS: A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models.

    ETHICS: This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK.

  8. William T, Jelip J, Menon J, Anderios F, Mohammad R, Awang Mohammad TA, et al.
    Malar J, 2014;13:390.
    PMID: 25272973 DOI: 10.1186/1475-2875-13-390
    While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain.
  9. Yusof R, Lau YL, Mahmud R, Fong MY, Jelip J, Ngian HU, et al.
    Malar J, 2014;13:168.
    PMID: 24886266 DOI: 10.1186/1475-2875-13-168
    Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia.
  10. Sanders KC, Rundi C, Jelip J, Rashman Y, Smith Gueye C, Gosling RD
    Malar J, 2014;13:24.
    PMID: 24443824 DOI: 10.1186/1475-2875-13-24
    Countries in the Asia Pacific region have made great progress in the fight against malaria; several are rapidly approaching elimination. However, malaria control programmes operating in elimination settings face substantial challenges, particularly around mobile migrant populations, access to remote areas and the diversity of vectors with varying biting and breeding behaviours. These challenges can be addressed through subnational collaborations with commercial partners, such as mining or plantation companies, that can conduct or support malaria control activities to cover employees. Such partnerships can be a useful tool for accessing high-risk populations and supporting malaria elimination goals.
  11. Barber BE, Bird E, Wilkes CS, William T, Grigg MJ, Paramaswaran U, et al.
    J Infect Dis, 2015 Apr 1;211(7):1104-10.
    PMID: 25301955 DOI: 10.1093/infdis/jiu562
    BACKGROUND: Plasmodium knowlesi is the commonest cause of malaria in Malaysia, but little is known regarding infection during pregnancy.
    METHODS: To investigate comparative risk and consequences of knowlesi malaria during pregnancy, we reviewed (1) Sabah Health Department malaria-notification records created during 2012-2013, (2) prospectively collected data from all females with polymerase chain reaction (PCR)-confirmed malaria who were admitted to a Sabah tertiary care referral hospital during 2011-2014, and (3) malaria microscopy and clinical data recorded at a Sabah tertiary care women and children's hospital during 2010-2014.
    RESULTS: During 2012-2013, 774 females with microscopy-diagnosed malaria were notified, including 252 (33%), 172 (20%), 333 (43%), and 17 (2%) with Plasmodium falciparum infection, Plasmodium vivax infection, Plasmodium malariae/Plasmodium knowlesi infection, and mixed infection, respectively. Among females aged 15-45 years, pregnancy was reported in 18 of 124 (14.5%), 9 of 93 (9.7%), and 4 of 151 (2.6%) P. falciparum, P. vivax, and P. malariae/P. knowlesi notifications respectively (P = .002). Three females with knowlesi malaria were confirmed as pregnant: 2 had moderate anemia, and 1 delivered a preterm low-birth-weight infant. There were 17, 7, and 0 pregnant women with falciparum, vivax, and knowlesi malaria, respectively, identified from the 2 referral hospitals.
    CONCLUSIONS: Although P. knowlesi is the commonest malaria species among females in Sabah, P. knowlesi infection is relatively rare during pregnancy. It may however be associated with adverse maternal and pregnancy outcomes.
    KEYWORDS: Plasmodium knowlesi; malaria; maternal anemia; pregnancy; preterm delivery
  12. Stanis CS, Song BK, Chua TH, Lau YL, Jelip J
    Turk J Med Sci, 2016 Jan 05;46(1):207-18.
    PMID: 27511356 DOI: 10.3906/sag-1411-114
    BACKGROUND/AIM: Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy.

    MATERIALS AND METHODS: Blood samples on filter papers were subject to conventional PCR methods using primers designed by us in multiplex PCR and previously designed primers of nested PCR. Both sets of results were compared with microscopic identification.

    RESULTS: Of the 129 samples identified as malaria-positive by microscopy, 15 samples were positive for P. falciparum, 14 for P. vivax, 6 for P. knowlesi, 72 for P. malariae, and 2 for mixed infection of P. falciparum/P. malariae. Both multiplex and nested PCR identified 12 P. falciparum single infections. For P. vivax, 9 were identified by multiplex and 12 by nested PCR. For 72 P. malariae cases, multiplex PCR identified 58 as P. knowlesi and 10 as P. malariae compared to nested PCR, which identified 59 as P. knowlesi and 7 as P. malariae.

    CONCLUSION: Multiplex PCR could be used as alternative molecular diagnosis for the identification of all Plasmodium species as it requires a shorter time to screen a large number of samples.

  13. Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R
    Am J Trop Med Hyg, 2016 Feb;94(2):336-339.
    PMID: 26598573 DOI: 10.4269/ajtmh.15-0569
    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent.
  14. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, et al.
    Emerg Infect Dis, 2016 Aug;22(8):1371-80.
    PMID: 27433965 DOI: 10.3201/eid2208.151885
    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
  15. Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, et al.
    PLoS One, 2016;11(3):e0152415.
    PMID: 27023787 DOI: 10.1371/journal.pone.0152415
    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
  16. Sastu UR, Abdullah NR, Norahmad NA, Saat MN, Muniandy PK, Jelip J, et al.
    Malar J, 2016;15:63.
    PMID: 26850038 DOI: 10.1186/s12936-016-1109-9
    Malaria cases persist in some remote areas in Sabah and Sarawak despite the ongoing and largely successful malaria control programme conducted by the Vector Borne Disease Control Programme, Ministry Of Health, Malaysia. Point mutations in the genes that encode the two enzymes involved in the folate biosynthesis pathway, dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) enzymes confer resistance to pyrimethamine and sulfadoxine respectively, in both Plasmodium falciparum and P. vivax. The aim of the current study was to determine the mutation on both pvdhfr at codon 13, 33, 57, 58, 61, 117, and 173 and pvdhps genes at codon 383 and 553, which are potentially associated with resistance to pyrimethamine and sulfadoxine in P. vivax samples in Sabah.
  17. Norahmad NA, Mohd Abd Razak MR, Abdullah NR, Sastu UR, Imwong M, Muniandy PK, et al.
    PLoS One, 2016;11(10):e0165515.
    PMID: 27788228 DOI: 10.1371/journal.pone.0165515
    Chloroquine (CQ) and fansidar (sulphadoxine-pyrimethamine, SP) were widely used for treatment of Plasmodium falciparum for several decades in Malaysia prior to the introduction of Artemisinin-based Combination Therapy (ACT) in 2008. Our previous study in Kalabakan, located in south-east coast of Sabah showed a high prevalence of resistance to CQ and SP, suggesting the use of the treatment may no longer be effective in the area. This study aimed to provide a baseline data of antimalarial drug resistant markers on P. falciparum isolates in Kota Marudu located in the north-east coast of Sabah. Mutations on genes associated with CQ (pfcrt and pfmdr1) and SP (pfdhps and pfdhfr) were assessed by PCR amplification and restriction fragment length polymorphism. Mutations on the kelch13 marker (K13) associated with artemisinin resistance were determined by DNA sequencing technique. The assessment of pfmdr1 copy number variation associated with mefloquine resistant was done by real-time PCR technique. A low prevalence (6.9%) was indicated for both pfcrt K76T and pfmdr1 N86Y mutations. All P. falciparum isolates harboured the pfdhps A437G mutation. Prevalence of pfdhfr gene mutations, S108N and I164L, were 100% and 10.3%, respectively. Combining the different resistant markers, only two isolates were conferred to have CQ and SP treatment failure markers as they contained mutant alleles of pfcrt and pfmdr1 together with quintuple pfdhps/pfdhfr mutation (combination of pfdhps A437G+A581G and pfdhfr C59R+S108N+I164L). All P. falciparum isolates carried single copy number of pfmdr1 and wild type K13 marker. This study has demonstrated a low prevalence of CQ and SP resistance alleles in the study area. Continuous monitoring of antimalarial drug efficacy is warranted and the findings provide information for policy makers in ensuring a proper malaria control.
  18. Suleiman M, Muhammad J, Jelip J, William T, Chua TH
    PMID: 29644840
    The horseshoe crab (Carcinoscorpius rotundicauda) is consumed by those
    residing near the coastal areas of Kota Marudu District in Malaysia, as it is considered
    a delicacy. During June to August, 2011 thirty cases of tetrodotoxin poisoning
    were reported from Kota Marudu District following ingestion of horseshoe
    crabs caught in Kota Marudu Bay. The purpose of this study is to describe this
    case series in order to determine risk factors to prevent further outbreaks. There
    were six confirmed and 24 probable cases of tetrodotoxin poisoning identified in
    the study area during the study period as diagnosed by clinical presentation and
    laboratory findings. Symptoms included dizziness (80%), circumoral and lingual
    numbness (80%), hand and feet numbness (63.3%), nausea and vomiting (30%)
    and weakness and difficulty in breathing (26.6%). Three cases (10%) died while 27
    cases recovered. Forty-seven percent of the cases had onset of symptoms within
    30 minutes of ingestion and 14% 31-60 minutes after ingestion of horseshoe crab
    meat. Urine samples were collected from the cases, while horseshoe crabs, cockles
    and sea water from the epidemic area were also taken for analysis. Tetrodotoxin
    was detected in the urine of six cases; the highest concentrations recorded were
    among the three cases who died. High tetrodotoxin concentrations were found
    in the hepatic cecum and eggs of the tested horseshoe crabs. Dinoflagellates were
    not detected in the sea water or cockle samples. Intensive health education was
    initiated quickly to stop other members of the Marudu Bay community from
    consuming the horseshoe crabs. This is the first documented epidemic of tetrodotoxin
    poisoning in Sabah.
  19. Grigg MJ, Cox J, William T, Jelip J, Fornace KM, Brock PM, et al.
    Lancet Planet Health, 2017 Jun 09;1(3):e97-e104.
    PMID: 28758162 DOI: 10.1016/S2542-5196(17)30031-1
    BACKGROUND: The emergence of human malaria due to the monkey parasite Plasmodium knowlesi threatens elimination efforts in southeast Asia. Changes in land use are thought to be driving the rise in reported P knowlesi cases, but the role of individual-level factors is unclear. To address this knowledge gap we assessed human and environmental factors associated with zoonotic knowlesi malaria risk.

    METHODS: We did this population-based case-control study over a 2 year period in the state of Sabah in Malaysia. We enrolled cases with microscopy-positive, PCR-confirmed malaria who presented to two primary referral hospitals serving the adjacent districts of Kudat and Kota Marudu. We randomly selected three malaria-negative community controls per case, who were matched by village within 2 weeks of case detection. We obtained questionnaire data on demographics, behaviour, and residential malaria risk factors, and we also assessed glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. We used conditional logistic regression models to evaluate exposure risk between P knowlesi cases and controls, and between P knowlesi and human-only Plasmodium spp malaria cases.

    FINDINGS: From Dec 5, 2012, to Jan 30, 2015, we screened 414 patients and subsequently enrolled 229 cases with P knowlesi malaria mono-infection and 91 cases with other Plasmodium spp infection. We enrolled 953 matched controls, including 683 matched to P knowlesi cases and 270 matched to non-P knowlesi cases. Age 15 years or older (adjusted odds ratio [aOR] 4·16, 95% CI 2·09-8·29, p<0·0001), male gender (4·20, 2·54-6·97, p<0·0001), plantation work (3·50, CI, 1·34-9·15, p=0·011), sleeping outside (3·61, 1·48-8·85, p=0·0049), travel (2·48, 1·45-4·23, p=0·0010), being aware of the presence of monkeys in the past 4 weeks (3·35, 1·91-5·88, p<0·0001), and having open eaves or gaps in walls (2·18, 1·33-3·59, p=0·0021) were independently associated with increased risk of symptomatic P knowlesi infection. Farming occupation (aOR 1·89, 95% CI 1·07-3·35, p=0·028), clearing vegetation (1·89, 1·11-3·22, p=0·020), and having long grass around the house (2·08, 1·25-3·46, p=0·0048) increased risk for P knowlesi infection but not other Plasmodium spp infection. G6PD deficiency seemed to be protective against P knowlesi (aOR 0·20, 95% CI 0·04-0·96, p=0·045), as did residual insecticide spraying of household walls (0·52, 0·31-0·87, p=0·014), with the presence of young sparse forest (0·35, 0·20-0·63, p=00040) and rice paddy around the house (0·16, 0·03-0·78, 0·023) also associated with decreased risk.

    INTERPRETATION: Adult men working in agricultural areas were at highest risk of knowlesi malaria, although peri-domestic transmission also occurrs. Human behavioural factors associated with P knowlesi transmission could be targeted in future public health interventions.

    FUNDING: United Kingdom Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council.

  20. Suleiman M, Jelip J, Rundi C, Chua TH
    Am J Trop Med Hyg, 2017 Dec;97(6):1731-1736.
    PMID: 29016314 DOI: 10.4269/ajtmh.17-0589
    During the months of January-February and May-June 2013 coinciding with the red tide occurrence in Kota Kinabalu, Sabah, Malaysia, six episodes involving 58 cases of paralytic shellfish poisoning (PSP) or saxitoxin (STX) poisoning and resulting in four deaths were reported. Many of them were intoxicated from consuming shellfish purchased from the markets, whereas others were intoxicated from eating shellfish collected from the beach. Levels of STX in shellfish collected from the affected areas were high (mean 2,920 ± 780 and 360 ± 140 µg STX equivalents/100 g shellfish meat respectively for the two periods). The count of toxic dinoflagellates (Pyrodinium bahamense var compressum) of the sea water sampled around the coast was also high (mean 34,200 ± 10,300 cells/L). Species of shellfish containing high levels of STX were Atrina fragilis, Perna viridis, and Crassostrea belcheri. The age of victims varied from 9 to 67 years. Symptoms presented were typical of PSP, such as dizziness, numbness, vomiting, and difficulty in breathing. Recommended steps to prevent or reduce PSP in future red tide season include better monitoring of red tide occurrence, regular sampling of shellfish for determination of STX level, wider dissemination of information on the danger of eating contaminated shellfish among the communities, fishermen, and fishmongers.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links