Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Ullah MZ, Awais MM, Akhtar M, Anwar MI, Navid MT, Khan I, et al.
    Trop Biomed, 2018 Dec 01;35(4):1028-1040.
    PMID: 33601850
    Toxoplasmosis is a protozoal infection of zoonotic potential with worldwide geographical distribution which affects nearly all warm-blooded animals including mammals and birds. Keeping in view, this study was conducted to determine the seroprevalence of toxoplasmosis along with associated risk factors and its haematological impacts in small ruminants of district Multan, Pakistan. In this study, a total of 250 sera samples collected from sheep (n=125) and goats (n=125) from three tehsils of Multan were examined using commercially available Latex agglutination test kit for the presence of anti-T. gondii antibodies. The haematological profiles of Toxoplasma seropositive and seronegative animals were determined by using automated haematology analyser. Overall seroprevalence of toxoplasmosis in small ruminants was 42.80% with a higher prevalence rate (44.80%) in sheep as compared to goats (40.80%). Sex, existence of co-morbid conditions, feeding pattern and presence of pet cats and dogs were identified as significant (P<0.05) risk factors associated with the presence of antibodies against toxoplasmosis. The breed was found to be a significant (P=0.026) risk factor for the seroprevalence of toxoplasmosis in goats but not in sheep. Haematological analysis revealed significantly altered leukocytic counts (P<0.05) in seropositive sheep and goats as compared to seronegative ones. Our findings showed that small ruminants of the Multan District in Pakistan are toxoplasma seropositive and may pose a serious threat of public health concern in the region.
  2. Ullah I, Khan I, Shafie S
    Sci Rep, 2017 04 25;7(1):1113.
    PMID: 28442747 DOI: 10.1038/s41598-017-01205-5
    Unsteady mixed convection flow of Casson fluid towards a nonlinearly stretching sheet with the slip and convective boundary conditions is analyzed in this work. The effects of Soret Dufour, viscous dissipation and heat generation/absorption are also investigated. After using some suitable transformations, the unsteady nonlinear problem is solved by using Keller-box method. Numerical solutions for wall shear stress and high temperature transfer rate are calculated and compared with previously published work, an excellent arrangement is followed. It is noticed that fluid velocity reduces for both local unsteadiness and Casson parameters. It is likewise noticed that the influence of a Dufour number of dimensionless temperature is more prominent as compared to species concentration. Furthermore, the temperature was found to be increased in the case of nonlinear thermal radiation.
  3. Ullah I, Bhattacharyya K, Shafie S, Khan I
    PLoS One, 2016;11(10):e0165348.
    PMID: 27776174 DOI: 10.1371/journal.pone.0165348
    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.
  4. Ullah H, Islam S, Khan I, Shafie S, Fiza M
    PLoS One, 2015;10(4):e0120127.
    PMID: 25874457 DOI: 10.1371/journal.pone.0120127
    In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential-difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit.
  5. Uddin S, Mehmood OU, Mohamad M, Roslan R, Khan I, Mohamed A
    Heliyon, 2023 Feb;9(2):e13210.
    PMID: 36814629 DOI: 10.1016/j.heliyon.2023.e13210
    In this paper, we studied the effect of a magnetic field on the non-isothermal second-grade fluid confined in a vertically oscillating cylinder. The flow solution is magnetized using the perpendicular magnetic field. The resultant fluid flow is due to the oscillating boundary motion and buoyancy force. Here, the MHD flow is modeled using the Caputo-Fabrizio non-integer derivative approach. The exact solution of the governing continuity, momentum and energy equations is obtained by means of Laplace and finite Hankel transforms. The commercial simulation software, Mathematica is used for calculating the roots of the Bessel function. The effects of dimensionless parameters such as Grashof and Prandtl numbers, magnetic field and fractional parameters on the second-grade fluid flow are analyzed. Heat transfer is high at a small Prandtl number. Velocity correlates positively with Grashof number and magnetic field, and negatively with Prandtl number. The heat and mass transfer results obtained from both conventional and fractional models are compared as well.
  6. Tan WT, Tan GS, Nather Khan IS
    Environ Pollut, 1988;52(3):221-35.
    PMID: 15092608
    Chemical forms of copper and lead in river water of the Linggi River Basin have been fractionated into ASV labile, moderately labile, slowly labile, and inert metal species, based on a previously proposed scheme. Free (hydrated) metal ions were identified by a potentiometric method using an ion selective electrode. Speciation results showed that the soluble copper and lead species occurred mainly in the moderately labile and slowly labile fractions. The speciation results are primarily interpreted in terms of organic interaction due to agricultural based and light industries, and urban discharges. The measured metal complexing capacity (MCC) of the samples reveals consistency of the results with the nature of the discharge. MCC correlates reasonably well with the value from the permanganate test on the river water. In general, the speciation pattern was found to be consistent with the findings of other workers.
  7. Sheikholeslami M, Shah Z, Shafee A, Khan I, Tlili I
    Sci Rep, 2019 02 04;9(1):1196.
    PMID: 30718893 DOI: 10.1038/s41598-018-37964-y
    In the present research, aluminum oxide- water (Al2O3-H2O) nanofluid free convection due to magnetic forces through a permeable cubic domain with ellipse shaped obstacle has been reported. Lattice Boltzmann approach is involved to depict the impacts of magnetic, buoyancy forces and permeability on nanoparticles migration. To predict properties of Al2O3- water nanofluid, Brownian motion impact has been involved. Outcomes revels that considering higher magnetic forces results in greater conduction mechanism. Permeability can enhance the temperature gradient.
  8. Sheikh NA, Ching DLC, Khan I, Sakidin HB
    Sci Rep, 2022 Aug 18;12(1):14117.
    PMID: 35982149 DOI: 10.1038/s41598-022-18110-1
    The flow of fluid through porous media is of great importance in industry and other physical situations, Darcy's law is one of the most useful laws to describe such situation, however, the flows through a dense swarm of particles or through a very high porous media cannot be elaborated by this law. To overcome this difficulty, Brinkman proposed a new idea of Brinkman-type fluid in highly porous media. In this study, the Brinkman-type fluid flow is analyzed with hybrid nanoparticles (a hybridized mixture of clay and alumina), suspended in water taken as a base fluid under the effect of an applied magnetic field. The fluid motion is taken inside a vertical channel with heated walls. Free convection is induced due to buoyancy. The momentum and energy equations are written in dimensionless form using the non-dimensional variables. The energy equation is modified to fractional differential equations using the generalized Fourier's law and the Caputo fractional derivatives. The fractional model is solved using the Laplace and Fourier transformation. Variations in velocity and temperature are shown for various fractional parameter values, as well as charts for the classical model. For the volume fractions of nanoparticles, the temperature distribution increases, with maximum values of hybrid nanoparticles with the highest specified volume fractions. Moreover, due to hybrid nanoparticles, the rate of heat transfer is intensified.
  9. Sheikh NA, Ching DLC, Khan I, Sakidin HB, Jamil M, Khalid HU, et al.
    Sci Rep, 2021 Aug 09;11(1):16117.
    PMID: 34373521 DOI: 10.1038/s41598-021-95528-z
    The present work used fractional model of Casson fluid by utilizing a generalized Fourier's Law to construct Caputo Fractional model. A porous medium containing nanofluid flowing in a channel is considered with free convection and electrical conduction. A novel transformation is applied for energy equation and then solved by using integral transforms, combinedly, the Fourier and Laplace transformations. The results are shown in form of Mittag-Leffler function. The influence of physical parameters have been presented in graphs and values in tables are discussed in this work. The results reveal that heat transfer increases with increasing values of the volume fraction of nanoparticles, while the velocity of the nanofluid decreases with the increasing values of volume fraction of these particles.
  10. Shaikh AK, Nazir A, Khan I, Shah AS
    Sci Rep, 2022 Dec 29;12(1):22562.
    PMID: 36581655 DOI: 10.1038/s41598-022-26499-y
    Smart grids and smart homes are getting people's attention in the modern era of smart cities. The advancements of smart technologies and smart grids have created challenges related to energy efficiency and production according to the future demand of clients. Machine learning, specifically neural network-based methods, remained successful in energy consumption prediction, but still, there are gaps due to uncertainty in the data and limitations of the algorithms. Research published in the literature has used small datasets and profiles of primarily single users; therefore, models have difficulties when applied to large datasets with profiles of different customers. Thus, a smart grid environment requires a model that handles consumption data from thousands of customers. The proposed model enhances the newly introduced method of Neural Basis Expansion Analysis for interpretable Time Series (N-BEATS) with a big dataset of energy consumption of 169 customers. Further, to validate the results of the proposed model, a performance comparison has been carried out with the Long Short Term Memory (LSTM), Blocked LSTM, Gated Recurrent Units (GRU), Blocked GRU and Temporal Convolutional Network (TCN). The proposed interpretable model improves the prediction accuracy on the big dataset containing energy consumption profiles of multiple customers. Incorporating covariates into the model improved accuracy by learning past and future energy consumption patterns. Based on a large dataset, the proposed model performed better for daily, weekly, and monthly energy consumption predictions. The forecasting accuracy of the N-BEATS interpretable model for 1-day-ahead energy consumption with "day as covariates" remained better than the 1, 2, 3, and 4-week scenarios.
  11. Shahzad F, Du J, Khan I, Fateh A, Shahbaz M, Abbas A, et al.
    Int J Environ Res Public Health, 2020 Jul 15;17(14).
    PMID: 32679748 DOI: 10.3390/ijerph17145102
    Historically, infectious diseases have been the leading cause of human psychosomatic strain and death tolls. This research investigated the recent threat of COVID-19 contagion, especially its impact among frontline paramedics treating patients with COVID-19, and their perception of self-infection, which ultimately increases their agonistic behaviour. Based on the stressor-strain-outcome paradigm, a research model was proposed and investigated using survey-based data through a structured questionnaire. The results found that the perceived threat of COVID-19 contagion (emotional and cognitive threat) was positively correlated with physiological anxiety, depression, and emotional exhaustion, which led toward agonistic behaviour. Further, perceived social support was a key moderator that negatively affected the relationships between agonistic behaviour and physiological anxiety, depression, and emotional exhaustion. These findings significantly contributed to the current literature concerning COVID-19 and pandemic-related effects on human behaviour. This study also theorized the concept of human agonistic behaviour, which has key implications for future researchers.
  12. Saqib M, Khan I, Shafie S, Mohamad AQ
    Sci Rep, 2021 Feb 12;11(1):3725.
    PMID: 33580116 DOI: 10.1038/s41598-020-78421-z
    The colloidal suspension of nanometer-sized particles of Fe3O4 in traditional base fluids is referred to as Ferro-nanofluids. These fluids have many technological applications such as cell separation, drug delivery, magnetic resonance imaging, heat dissipation, damping, and dynamic sealing. Due to the massive applications of Ferro-nanofluids, the main objective of this study is to consider the MHD flow of water-based Ferro-nanofluid in the presence of thermal radiation, heat generation, and nanoparticle shape effect. The Caputo-Fabrizio time-fractional Brinkman type fluid model is utilized to demonstrate the proposed flow phenomenon with oscillating and ramped heating boundary conditions. The Laplace transform method is used to solve the model for both ramped and isothermal heating for exact solutions. The ramped and isothermal solutions are simultaneously plotted in the various figures to study the influence of pertinent flow parameters. The results revealed that the fractional parameter has a great impact on both temperature and velocity fields. In the case of ramped heating, both temperature and velocity fields decreasing with increasing fractional parameter. However, in the isothermal case, this trend reverses near the plate and gradually, ramped, and isothermal heating became alike away from the plate for the fractional parameter. Finally, the solutions for temperature and velocity fields are reduced to classical form and validated with already published results.
  13. Samiulhaq, Ahmad S, Vieru D, Khan I, Shafie S
    PLoS One, 2014;9(5):e88766.
    PMID: 24785147 DOI: 10.1371/journal.pone.0088766
    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.
  14. Raza A, Farrukh S, Hussain A, Khan I, Othman MHD, Ahsan M
    Membranes (Basel), 2021 Mar 29;11(4).
    PMID: 33805339 DOI: 10.3390/membranes11040245
    The separation and capture of CO2 have become an urgent and important agenda because of the CO2-induced global warming and the requirement of industrial products. Membrane-based technologies have proven to be a promising alternative for CO2 separations. To make the gas-separation membrane process more competitive, productive membrane with high gas permeability and high selectivity is crucial. Herein, we developed new cellulose triacetate (CTA) and cellulose diacetate (CDA) blended membranes for CO2 separations. The CTA and CDA blends were chosen because they have similar chemical structures, good separation performance, and its economical and green nature. The best position in Robeson's upper bound curve at 5 bar was obtained with the membrane containing 80 wt.% CTA and 20 wt.% CDA, which shows the CO2 permeability of 17.32 barrer and CO2/CH4 selectivity of 18.55. The membrane exhibits 98% enhancement in CO2/CH4 selectivity compared to neat membrane with only a slight reduction in CO2 permeability. The optimal membrane displays a plasticization pressure of 10.48 bar. The newly developed blended membranes show great potential for CO2 separations in the natural gas industry.
  15. Rasool MF, Rehman AU, Imran I, Abbas S, Shah S, Abbas G, et al.
    Front Public Health, 2020;8:531038.
    PMID: 33330300 DOI: 10.3389/fpubh.2020.531038
    Introduction: Medication error is unintentional and can be reduced by reducing the risk factors. Patients suffering from chronic diseases are at an increased risk of medication errors. Objective: This work aims to assess the risk factors associated with medication errors among patients suffering from chronic disorders in hospitals of South Punjab, Pakistan. Methodology: Multiple logistic regression analysis was used to assess the impact of different risk factors on the prevalence of medication errors in patients suffering from chronic diseases. Results: A greater risk for the occurrence of medication errors was associated with age ≥60 years (odds ratio, OR = 1.9; 95% CI = 1.3-3.1; p = 0.001), overburdened healthcare system (OR = 2.2; 95% CI = 1.64-3.56; p < 0.000), number of prescribed drugs ≥5 (OR = 1.74; 95% CI = 1.02-2.64; p < 0.000), comorbidities (OR = 2.6; 95% CI = 1.72-3.6; p = 0.003), Charlson comorbidity index (OR = 1.31; 95% CI = 0.49-1.84; p = 0.004), and multiple prescribers to one patient (OR = 1.12; 95% CI = 0.64-1.76; p = 0.001). Conclusion: Older age, overburdened healthcare system, number of prescribed drugs, comorbidities, Charlson comorbidity index, and multiple prescribers to one patient are significant risk factors for the occurrence of medication errors.
  16. Rasool MF, Rehman AU, Khan I, Latif M, Ahmad I, Shakeel S, et al.
    PLoS One, 2023;18(1):e0276277.
    PMID: 36693042 DOI: 10.1371/journal.pone.0276277
    Patients suffering from chronic diseases are more likely to experience pDDIs due to older age, prolonged treatment, severe illness and greater number of prescribed drugs. The objective of the current study was to assess the prevalence of pDDIs and risk factors associated with occurrence of pDDIs in chronic disease patients attending outpatient clinics for regular check-ups. Patients suffering from diabetes, chronic obstructive pulmonary disease (COPD), stroke and osteoporosis were included in the study. This study was a cross sectional, observational, prospective study that included 337 patients from outpatient clinics of respiratory ward, cardiac ward and orthopedic ward of Nishter Hospital Multan, Pakistan. The mean number of interactions per patient was 1.68. A greater risk for occurrence of pDDI was associated with older age ≥ 60 years (OR = 1.95, 95% CI = 1.44-2.37, p<0.001); polypharmacy (≥ 5 drugs) (OR = 3.74, 95% CI 2.32-4.54, p<0.001); overburden (OR = 2.23, 95% CI = 1.64-3.16, p<0.01); CCI score (OR = 1.28, 95% CI = 1.04-1.84, p<0.001); multiple prescribers to one patient (OR = 1.18, 95% CI = 1.06-1.41, p<0.01); and trainee practitioner (OR = 1.09, 95% CI = 1.01-1.28, p<0.01). Old age, polypharmacy, overburden healthcare system, higher comorbidity index, multiple prescribers to one patient and trainee practitioner were associated with increased risk of occurrence of pDDIs in chronic disease patients.
  17. Rafiq M, Farrukh M, Attiq S, Shahzad F, Khan I
    Work, 2023;75(3):877-886.
    PMID: 36683474 DOI: 10.3233/WOR-211363
    BACKGROUND: The demand for innovation and satisfaction is increasing rapidly due to technological advancement and the fast-changing business environment.

    OBJECTIVE: The purpose of this article is to investigate how job crafting augments work outputs (i.e., innovation performance and career satisfaction) through work engagement.

    METHODS: Data were collected from 477 workers working in the Pakistan manufacturing sector. A structural equation modeling technique was used to investigate the mediation model.

    RESULTS: Job crafting has a direct and indirect association with innovation performance and career satisfaction - via employees' work engagement. Additionally, the mediating impact was stronger for innovation performance than for career satisfaction. The findings advocate that managers should pay attention to employees' job crafting to improve employees' work engagement in manufacturing organizations. To improve employees' innovation performance and career satisfaction via work engagement, it is important to improve organization-wide job crafting in traditional manufacturing organizations. Strategic and managerial actions related to job crafting might boost employees' engagement in the organization that environments provide incessantly better outcomes.

    CONCLUSION: By linking job crafting and work engagement to their attitude towards career satisfaction and innovation performance in Pakistani manufacturing firms, this study adds a new dimension to the study of Pakistani manufacturing employees and typically to the best practices in career debates. This knowledge is important and unique because it accentuates that in addition to work engagement, which focuses primarily on employee growth in the organization, job crafting should also be given equal importance to advance manufacturing employees' outcomes.

  18. Nasim W, Belhouchette H, Tariq M, Fahad S, Hammad HM, Mubeen M, et al.
    Environ Sci Pollut Res Int, 2016 Feb;23(4):3658-70.
    PMID: 26498803 DOI: 10.1007/s11356-015-5613-1
    Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.
  19. Naqvi AA, Hassali MA, Naqvi SBS, Kachela B, Khan I
    Int J Rheum Dis, 2020 Mar;23(3):325-333.
    PMID: 31880102 DOI: 10.1111/1756-185X.13776
    OBJECTIVE: This study aimed to estimate annual direct cost attributed to rheumatoid arthritis (RA) treatment from a patient's perspective using real-world patient follow-up data from hospitals' electronic database.

    METHODS: A prospective 1-year study was conducted in rheumatology clinics of tertiary care hospitals of Karachi, Pakistan. Cost-of-illness methodology was used and all patient data related to costs of rheumatologist visits, physical therapy sessions, medications, assistive devices and laboratory investigations were obtained directly in printed hardcopies from patient electronic databases using their medical record numbers. Transportation cost was calculated from patient-reported log books. Data were analyzed through IBM SPSS version 23. Patients were asked to sign a written consent and the study was ethically approved.

    RESULTS: The mean age of patients (N = 358) was 48 years. Most patients (73.7%) were female, married (86%) and had basic education (71.8%). Average cost of rheumatologist visits was PKR 11 510.61 (USD: 72.05) while it was PKR 66 947.37 (USD: 419.07) for physical therapy sessions. On average, medicines and medical devices costs were estimated at PKR 10 104.23 (USD: 63.25) and PKR 7848.48 (USD: 49.13) respectively. Cost attributed to diagnostic and laboratory charges was PKR 1962.12 (USD: 12.28) and travel expense was PKR 6541 (USD: 40.95). The direct expenditure associated with managing RA was PKR 37 558 (USD: 235.1). All costs were reported per annum.

    CONCLUSION: Patient with RA in Pakistan pay a considerable amount of their income for managing their condition. Most patients have no provision for insurance which is a need considering the nature of the disease and associated productivity loss that would significantly lower income as the disease progresses.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links