METHODOLOGY: A cross-sectional observational study was performed on patients diagnosed with MetS and compared to normal controls. All patients underwent ophthalmic and anthropometric examination, serological and biochemical blood investigations; and ocular imaging using spectral-domain optical coherence tomography. Patients with ocular pathology were excluded. Unpaired t-test was used to compare mean thickness between the two groups. One-way ANOVA with Bonferroni correction for multiple comparisons was used to compare mean thickness between different tertiles of MetS parameters, and a generalized estimating equation was used to correct for inter-eye correlation and to assess association between mean thickness and covariates.
RESULTS: Two hundred and forty-eight eyes from 124 participants (1:1 ratio of MetS patients to controls) were included. Age ranged between 30 to 50 years old, and mean age was 40 ± 6.6 years. RNFL thickness was lower globally (93.6 ± 9.9 μm vs 99.0 ± 9.3, p<0.001) and in the inferior (124.5 ± 17.5 μm vs 131.0 ± 16.4 μm, p = 0.002), superior (117.2 ± 16.0 μm vs 126.3 ± 14.4 μm, p<0.001) and temporal (65.5 ± 10.2 μm vs 69.5 ± 9.8, p = 0.002) sectors in MetS patients compared to controls. Only the central (237.0 ± 14.0 μm vs 243.6 ± 18.0 μm, p = 0.002) and inferior parafoveal (307.8 ± 20.9 vs 314.6 ± 14.6, p = 0.004) area of the macula was significantly thinner. The inferior RNFL sector had the most difference (mean difference = 9.1 μm). The Generalized Estimating Equation found that, after adjusting for age, diastolic blood pressure, BMI, HDL and obesity; the number of MetS components and elevated triglyceride levels were independent risk factors for reduced thickness in global RNFL (β = -4.4, 95% CI = -7.29 to -1.5, p = 0.003) and inferior parafovea (β = -6.85, 95% CI = -11.58 to -2.13, p = 0.004) thickness respectively.
CONCLUSION: RNFL thinning was seen more than macula thinning in MetS patients, suggesting RNFL susceptibility to neurodegeneration than the macula. A higher number of metabolic components and elevated triglyceride levels were independent risk factors for retinal thinning in this group of patients.
METHOD: We designed a weight loss programme for our HCPs named the 'Fit and Trimmed Staff programme, which consisted of 3 months of group education on obesity-related health problems led by a doctor, a pharmacist, a nutritionist and an occupational therapist among HCPs. Monthly individual dietary counselling by a nutritionist was also provided for 6 months. We measured the body weight, body mass index, percentage of body fat, visceral fat and percentage of skeletal muscle of the HCPs before and after the intervention.
RESULTS: Forty-five (56.25%) HCPs at Simpang Health Clinic were either overweight or obese; the majority of them were drivers and administrative clerks (100%), followed by health attendants (69.2%) and medical assistants (63.6%). At 6 months post-intervention, there was a trend towards a non-significant reduction in the fat percentage (median=-0.8%, P=0.423). Approximately 42% (n=19) of the HCPs lost weight, while 58% gained weight. Weight loss was observed more commonly in the male HCPs (>50%) than in the female HCPs.
CONCLUSION: A weight loss programme solely consisting of health discussion and nutritional advice is inadequate to induce weight reductions. A multimodal approach may be considered in managing weight among HCPs.
Methods: Sprague-Dawley (SD) rats were divided into three groups: a no-treatment control group (n = 6), balanced salt solution (BSS) treatment group (n = 6), and hUC-MSCs treatment group (n = 6). Visual functions were assessed by flash visual evoked potential (fVEP) at baseline, Week 3, and Week 6 after optic nerve crush injury. Right eyes were enucleated after 6 weeks for histology.
Results: The fVEP showed shortened latency delay and increased amplitude in the hUC-MSCs treated group compared with control and BSS groups. Higher cellular density was detected in the hUC-MSC treated group compared with the BSS and control groups. Co-localized expression of STEM 121 and anti-S100B antibody was observed in areas of higher nuclear density, both in the central and peripheral regions.
Conclusion: Peribulbar transplantation of hUC-MSCs demonstrated cellular integration that can potentially preserve the optic nerve function with a significant shorter latency delay in fVEP and higher nuclear density on histology, and immunohistochemical studies observed cell migration particularly to the peripheral regions of the optic nerve.