Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Mohammad F, Yusof NA
    J Colloid Interface Sci, 2014 Nov 15;434:89-97.
    PMID: 25170601 DOI: 10.1016/j.jcis.2014.07.025
    In the present work, nanohybrid of an anticancer drug, doxorubicin (Dox) loaded gold-coated superparamagnetic iron oxide nanoparticles (SPIONs@Au) were prepared for a combination therapy of cancer by means of both hyperthermia and drug delivery. The Dox molecules were conjugated to SPIONs@Au nanoparticles with the help of cysteamine (Cyst) as a non-covalent space linker and the Dox loading efficiency was investigated to be as high as 0.32 mg/mg. Thus synthesized particles were characterized by HRTEM, UV-Vis, FT-IR, SQUID magnetic studies and further tested for heat and drug release at low frequency oscillatory magnetic fields. The hyperthermia studies investigated to be strongly influenced by the applied frequency and the solvents used. The Dox delivery studies indicated that the drug release efficacy is strongly improved by maintaining the acidic pH conditions and the oscillatory magnetic fields, i.e. an enhancement in the Dox release was observed from the oscillation of particles due to the applied frequency, and is not effected by heating of the solution. Finally, the in vitro cell viability and proliferation studies were conducted using two different immortalized cell lines containing a cancerous (MCF-7 breast cancer) and non-cancerous H9c2 cardiac cell type.
  2. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Alitheen NB, Hussein MZ, et al.
    J Colloid Interface Sci, 2016 Oct 15;480:146-58.
    PMID: 27428851 DOI: 10.1016/j.jcis.2016.07.011
    In this study, we modulated the anti-cancer efficacy of 5-Fluorouracil (5-FU) using a carrier system with enhanced targeting efficacy towards folate receptors (FRs) expressing malignant tissues. The 5-FU drug was loaded onto Mn-ZnS quantum dots (QDs) encapsulated with chitosan (CS) biopolymer and conjugated with folic acid (FA) based on a simple wet chemical method. The formation of 5-FU drug loaded composite was confirmed using Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore, the in vivo biodistribution and tumor targeting specificity of the 5-FU@FACS-Mn:ZnS in the tumor-bearing mice was conducted based on the Zn(2+) tissue bioaccumulation using inductively coupled plasma (ICP) spectroscopy. In addition to the characterization, the in vitro release profile of 5-FU from the conjugates investigated under diffusion controlled method demonstrated a controlled release behaviour as compared against the release behaviour of free 5-FU drug. The as-synthesized 5-FU@FACS-Mn:ZnS nanoparticle (NP) systemically induced higher level of apoptosis in breast cancer cells in vitro as compared to cells treated with free 5-FU drug following both cell cycle and annexin assays, respectively. Also, the in vivo toxicity assessment of the 5-FU@FACS-Mn:ZnS NPs as compared to the control did not cause any significant increase in the activities of the liver and kidney function biomarkers, malondialdehyde (MDA) and nitric oxide (NO) levels. However, based on the FA-FRs chemistry, the 5-FU@FACS-Mn:ZnS NPs specifically accumulated in the tumor of the tumor-bearing mice and thus contributed to the smaller tumor size and less event of metastasis was observed in the lungs when compared to the tumor-bearing mice groups treated with the free 5-FU drug. In summary, the results demonstrated that the 5-FU@FACS-Mn:ZnS QDs exhibits selective anti-tumor effect in MDA-MB231 breast cancer cells in vitro and 4TI breast cancer cells in vivo, providing a blueprint for improving the 5-FU efficacy and tumor targeting specificity with limited systemic toxicity.
  3. Haque J, Zulkifli MFR, Ismail N, Quraishi MA, Mohd Ghazali MS, Berdimurodov E, et al.
    ACS Omega, 2023 Jul 18;8(28):24797-24812.
    PMID: 37483193 DOI: 10.1021/acsomega.3c00366
    Three novel natural amino acid-derived sodium L-2-(1-imidazolyl) alkanoic acids (IZSs), namely, sodium 2-(1H-imidazol-1-yl)-4-methylpentanoate (IZS-L), sodium 2-(1H-imidazol-1-yl)-3-phenylpropanoate (IZS-P), and sodium 2-(1H-imidazol-1-yl)-4-(methylthio)butanoate (IZS-M), were investigated as corrosion inhibitors. The IZSs were synthesized following the green chemistry principles, and their structure was characterized using FTIR and NMR techniques. The corrosion study results reveal that a moderate concentration of IZSs (having low solution conductivity) showed potential corrosion inhibition for mild steel in artificial seawater. At longer immersion, IZS-P forms a uniform protective film and exhibits the potential inhibition efficiency of 82.46% at 8.4 mmol L-1. Tafel polarization results reveal that IZS-P and IZS-M act as mixed types with an anodic predominantly corrosion inhibitor. The electrochemical impedance spectroscopy results signify that IZSs inhibit mild steel corrosion through the formation of an inhibitor film on the metal surface, which was further confirmed by the FTIR, SEM, EDX, and XPS studies. DFT result shows that in IZS-P, the benzylic group (-CH2-Ph) has greater electron distribution compared to isobutyl (-CH2CH(CH3)2) in IZS-L and methythioethyl group (-CH2CH2SCH3) which supported the corrosion inhibition performance at longer immersion [IZS-P (82.46%) > IZS-M (67.19%) > IZS-L (24.77%)].
  4. Wong SS, Wong CC, Ng KW, Bostanudin MF, Tan SF
    PLoS One, 2023;18(1):e0280680.
    PMID: 36696454 DOI: 10.1371/journal.pone.0280680
    INTRODUCTION: This study aims to assess the impacts of COVID-19 pandemics among university students in Malaysia, by identifying the prevalence of depression, anxiety and stress among them and their respective predictors.

    METHODOLOGY: An online cross-sectional study was conducted via non-probabilistic convenience sampling. Data were collected on sociodemographic characteristics, lifestyle, COVID-19 related influences. Mental health status was assessed with depression, anxiety, and stress scale (DASS-21).

    RESULTS: 388 students participated this study (72.4% female; 81.7% Bachelor's student). The prevalence of moderate to severe depression, anxiety and stress among university students are 53.9%, 66.2% and 44.6%, respectively. Multivariable logistic regression analysis found that the odds of depression were lower among students who exercise at least 3 times per week (OR: 0.380, 95% CI: 0.203-0.711). The odd ratio of student who had no personal history of depression to had depression, anxiety and stress during this pandemic was also lower in comparison (OR: 0.489, 95% CI: 0.249-0.962; OR: 0.482, 95% CI: 0.241-0.963; OR: 0.252, 95% CI: 0.111-0.576). Surprisingly, students whose are currently pursuing Master study was associated with lower stress levels (OR: 0.188, 95% CI: 0.053-0.663). However, student who had poorer satisfaction of current learning experience were more likely to experience stress (OR: 1.644, 95% CI: 1.010-2.675).

    LIMITATIONS: It is impossible to establish causal relationships between variables on mental health outcomes, and there is a risk of information bias.

    CONCLUSION: The prevalence of mental health issues among university students is high. These findings present essential pieces of predictive information when promoting related awareness among them.

  5. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, et al.
    Int J Biol Macromol, 2017 Sep;102:822-828.
    PMID: 28455253 DOI: 10.1016/j.ijbiomac.2017.04.074
    The current study presents about the effect of cellulose nanofibers (CNFs) filler on the thermal and dynamic mechanical analysis (DMA) of epoxy composites as a function of temperature. In this study hand lay-up method was used to fabricate CNF reinforced Epoxy nanocomposites with CNF loading of 0.5%, 0.75%, and 1% into epoxy resin. The obtained thermal and DMA results illustrates that thermal stability, char content, storage modulus (E'), loss modulus (E") and glass transition temperature (Tg) increases for all CNF/epoxy nanocomposites compared to the pure epoxy. Thermal results revealed that 0.75% offers superior resistance or stability towards heat compared to its counterparts. In addition, 0.75% CNF/epoxy nanocomposites confers highest value of storage modulus as compared to 0.5% and 1% filler loading. Hence, it is concluded that 0.75% CNFs loading is the minimal to enhance both thermal and dynamic mechanical properties of the epoxy composites and can be utilized for advance material applications where thermal stability along with renewability are prime requirements.
  6. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M
    Int J Biol Macromol, 2017 Apr;97:190-200.
    PMID: 28082223 DOI: 10.1016/j.ijbiomac.2017.01.029
    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.
  7. Birma Bwatanglang I, Mohammad F, Yusof NA, Elyani Mohammed N, Abu N, Alitheen NB, et al.
    J Mater Sci Mater Med, 2017 Aug 08;28(9):138.
    PMID: 28791524 DOI: 10.1007/s10856-017-5949-9
    5-Fluororaucil (5-FU) as anti-cancer drug was reported to induce thymidine synthase (TS) overexpression and cancer cell resistance. To improve its therapeutic efficacy and selective targeting, here we developed a targeted delivery system mediated by the active ligand-folate receptor chemistry to deliver the 5-FU drug selectively into the tumor microenvironment. The preparation was achieved by exploring chitosan (CS)-biopolymer based system with folic acid (FA)-conjugation. The 5-FU@FACS-Mn:ZnS quantum dots (QDs) based on the histological assessment conducted in the 4T1 challenged mice showed an improved tumor remission in the liver, spleen and lungs. The 5-FU@FACS-Mn:ZnS composite induced anti-proliferative properties in these organs as compared to the free 5-FU drug. Unlike the 5-FU@FACS-Mn:ZnS treated groups which showed some specific morphological changes such as cell shrinkage without obvious presence of adipocytes, the excised section of the tumor in the untreated control group and the free 5-FU drug treated group showed necrotic and degenerated cells; these cells are multifocally distributed in the tumor mass with evidence of widely distributed adipocytes within the tumor mass. These findings suggest that the 5-FU@FACS-Mn:ZnS composite has a superior role during the induction of apoptosis in the 4T1 cells as compared to the free 5-FU drug treated groups. The results of the study therefore suggest that the impregnation of 5-FU anti-cancer drug within the FACS-Mn:ZnS system significantly improves its selective targeting efficacy, in addition to improving the anti-proliferative properties and attenuate possible tumor resistances to the 5-FU drug. The work discusses about the anti-metastatic effects of folic acid-bound 5-Fluororacil loaded Mn:ZnS quantum dots towards 4T1 cell line proliferation in mice based on the histological analysis.
  8. Abd Rahman S, Ariffin N, Yusof NA, Abdullah J, Mohammad F, Ahmad Zubir Z, et al.
    Sensors (Basel), 2017 Jul 01;17(7).
    PMID: 28671559 DOI: 10.3390/s17071537
    A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (successive ionic layer adsorption and reaction). The distribution, morphology, and optical characteristics of the prepared core-shell QDs were assessed by transmission electron microscopy (TEM) and spectrofluorescence, respectively. From the analysis, the results show that the mean particle size of prepared QDs is in the range of 10-12 nm and that the optimum emission condition was displayed at 620 nm. Further, the prepared CdSe/ZnS core shell QDs were modified by means of a room temperature ligand-exchange method that involves six organic ligands, L-cysteine, L-histidine, thio-glycolic acid (TGA or mercapto-acetic acid, MAA), mercapto-propionic acid (MPA), mercapto-succinic acid (MSA), and mercapto-undecanoic acid (MUA). This process was chosen in order to maintain a very dense water solubilizing environment around the QDs surface. From the analysis, the results show that the CdSe/ZnS capped with TGA (CdSe/ZnS-TGA) exhibited the strongest fluorescence emission as compared to others; hence, it was tested further for the glucose detection after their treatment with glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes. Here in this study, the glucose detection is based on the fluorescence quenching effect of the QDs, which is correlated to the oxidative reactions occurred between the conjugated enzymes and glucose. From the analysis of results, it can be inferred that the resultant GOx:HRP/CdSe/ZnS-TGA QDs system can be a suitable platform for the fluorescence-based determination of glucose in the real samples.
  9. Sulaiman A, Omar K, Nasrudin MF
    J Imaging, 2019 Apr 12;5(4).
    PMID: 34460486 DOI: 10.3390/jimaging5040048
    In this era of digitization, most hardcopy documents are being transformed into digital formats. In the process of transformation, large quantities of documents are stored and preserved through electronic scanning. These documents are available from various sources such as ancient documentation, old legal records, medical reports, music scores, palm leaf, and reports on security-related issues. In particular, ancient and historical documents are hard to read due to their degradation in terms of low contrast and existence of corrupted artefacts. In recent times, degraded document binarization has been studied widely and several approaches were developed to deal with issues and challenges in document binarization. In this paper, a comprehensive review is conducted on the issues and challenges faced during the image binarization process, followed by insights on various methods used for image binarization. This paper also discusses the advanced methods used for the enhancement of degraded documents that improves the quality of documents during the binarization process. Further discussions are made on the effectiveness and robustness of existing methods, and there is still a scope to develop a hybrid approach that can deal with degraded document binarization more effectively.
  10. Khairi NA, Yusof NA, Abdullah AH, Mohammad F
    Int J Mol Sci, 2015;16(5):10562-77.
    PMID: 26006226 DOI: 10.3390/ijms160510562
    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity.
  11. Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Md Noor SS, Ahmad Raston NH, et al.
    Sensors (Basel), 2018 Jun 14;18(6).
    PMID: 29899214 DOI: 10.3390/s18061932
    In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions. For disease detection, the adapted protocol is based mainly on the conventional ELISA procedure that involves catalase-labeled antibodies, i.e., the enzymes consume hydrogen peroxide and further produce GNPs with the addition of gold (III) chloride. The amount of hydrogen peroxide remaining in the solution determines whether the GNPs solution is to be formed in the color blue or the color red, as it serves as a confirmation for the naked eye detection of TB analytes. However, the conventional ELISA method only shows tonal colors that need a high concentration of analyte to achieve high confidence levels for naked eye detection. Also, in this research, we proposed the incorporation of protein biomarker, Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10), as a means of TB detection using plasmonic ELISA. With the use of this technique, the CFP-10 detection limit can be lowered to 0.01 µg/mL by the naked eye. Further, our developed technique was successfully tested and confirmed with sputum samples from patients diagnosed with positive TB, thereby providing enough evidence for the utilization of our technique in the early diagnosis of TB disease.
  12. Busra MFM, Lokanathan Y
    Curr Pharm Biotechnol, 2019;20(12):992-1003.
    PMID: 31364511 DOI: 10.2174/1389201020666190731121016
    Tissue engineering focuses on developing biological substitutes to restore, maintain or improve tissue functions. The three main components of its application are scaffold, cell and growthstimulating signals. Scaffolds composed of biomaterials mainly function as the structural support for ex vivo cells to attach and proliferate. They also provide physical, mechanical and biochemical cues for the differentiation of cells before transferring to the in vivo site. Collagen has been long used in various clinical applications, including drug delivery. The wide usage of collagen in the clinical field can be attributed to its abundance in nature, biocompatibility, low antigenicity and biodegradability. In addition, the high tensile strength and fibril-forming ability of collagen enable its fabrication into various forms, such as sheet/membrane, sponge, hydrogel, beads, nanofibre and nanoparticle, and as a coating material. The wide option of fabrication technology together with the excellent biological and physicochemical characteristics of collagen has stimulated the use of collagen scaffolds in various tissue engineering applications. This review describes the fabrication methods used to produce various forms of scaffolds used in tissue engineering applications.
  13. Bostanudin MF, Barbu E, Liew KB
    Polymers (Basel), 2021 Aug 25;13(17).
    PMID: 34502895 DOI: 10.3390/polym13172852
    Polymeric colloidal nanocarriers formulated from hydrophobically grafted carbohydrates have been the subject of intensive research due to their potential to increase the percutaneous penetration of hydrophilic actives. To this goal, a series of hydrophobically grafted pullulan (BMO-PUL) derivatives with varying degree of grafting (5-64%) was prepared through functionalisation with 2-(butoxymethyl)oxirane. The results demonstrated that monodispersed BMO-PUL nanocarriers (size range 125-185 nm) could be easily prepared via nanoprecipitation; they exhibit close-to-spherical morphology and adequate stability at physiologically relevant pH. The critical micellar concentration of BMO-PUL was found to be inversely proportional to their molecular weight (Mw) and degree of grafting (DG), with values of 60 mg/L and 40 mg/L for DG of 12.6% and 33.8%, respectively. The polymeric nanocarriers were loaded with the low Mw hydrophilic active α-arbutin (16% loading), and the release of this active was studied at varying pH values (5 and 7), with a slightly faster release observed in acidic conditions; the release profiles can be best described by a first-order kinetic model. In vitro investigations of BMO-PUL nanocarriers (concentration range 0.1-4 mg/mL) using immortalised skin human keratinocytes cells (HaCaT) evidenced their lack of toxicity, with more than 85% cell viability after 24 h. A four-fold enhance in arbutin permeation through HaCaT monolayers was recorded when the active was encapsulated within the BMO-PUL nanocarriers. Altogether, the results obtained from the in vitro studies highlighted the potential of BMO-PUL nanocarriers for percutaneous delivery applications, which would warrant further investigation in vivo.
  14. Anita Lett J, Sagadevan S, Léonard E, Fatimah I, Motalib Hossain MA, Mohammad F, et al.
    Artif Organs, 2021 Dec;45(12):1501-1512.
    PMID: 34309044 DOI: 10.1111/aor.14045
    The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
  15. Azizi P, Rafii MY, Abdullah SN, Hanafi MM, Maziah M, Sahebi M, et al.
    Front Plant Sci, 2016;7:773.
    PMID: 27379107 DOI: 10.3389/fpls.2016.00773
    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48, and 72 h after inoculation in transgenic plants, while it was increased in the inoculated control plants. This study successfully clarified that over-expression of the Pikh gene in transgenic plants can improve their blast resistance against the M. oryzae pathotype P7.2.
  16. Ming CR, Ban Yu-Lin A, Abdul Hamid MF, Latif MT, Mohammad N, Hassan T
    Respirology, 2018 10;23(10):914-920.
    PMID: 29923364 DOI: 10.1111/resp.13325
    BACKGROUND AND OBJECTIVE: The Southeast Asia (SEA) haze is an annual problem and at its worst could produce respirable particles of concentrations up to 500 μg/m3 which is five times the level considered as 'unhealthy'. However, there are limited reports examining the direct clinical impact of the annual haze. This study examines the effects of the SEA haze on respiratory admissions.

    METHODS: Data from all respiratory admissions in Universiti Kebangsaan Malaysia Medical Centre (UKMMC) from 1st January 2014 to 31st December 2015 were collected retrospectively from chart and electronic database. A total of 16 weeks of haze period had been formally dated by the Department of Environment using the definition of weather phenomenon leading to atmospheric visibility of less than 10 km. Multivariable regression analyses were performed to estimate rate ratios and 95% CI.

    RESULTS: There were 1968 subjects admitted for respiratory admissions in UKMMC during the study period. Incidence rates per week were significantly different between the two groups with 27.6 ± 9.2 cases per week during the haze versus 15.7 ± 6.7 cases per week during the non-haze period (P < 0.01). A total of 4% versus 2% was admitted to the intensive care unit in the haze and the non-haze groups, respectively (P = 0.02). The mean ± SD lengths of stay was 12.1 ± 5.2 days; the haze group had a longer stay (18.2 ± 9.7 days) compared to the non-haze groups (9.7 ± 3.9) (P < 0.001).

    CONCLUSION: The annual SEA haze is associated with increased respiratory admissions.

  17. Alhaj AK, Burhamah T, Mohammad F, Almutawa M, Dashti F, Almurshed M, et al.
    World Neurosurg, 2024 Apr 16.
    PMID: 38636638 DOI: 10.1016/j.wneu.2024.04.057
    BACKGROUND: Medulloblastomas are the most common malignant brain tumors in the pediatric population. Based on the idea that tumors with identical radio-genomic features should behave similarly, the four molecular subtypes are now widely accepted as a guide for the management and prognosis. The radiological features of medulloblastomas can predict the molecular subtype; thus, anticipating the subsequent disease progression. However, this has not been evaluated comprehensively.

    PURPOSE: We aim to thoroughly study the association between the molecular subtypes and radiological features of medulloblastomas. Moreover, we aim to investigate the efficacy of this correlation with the use of progression-free survival (PFS) and five-year survival rates.

    METHODS: A retrospective analysis was conducted for all histopathological confirmed medulloblastomas in pediatric patients (<16 years old) that were operated on in Kuwait over the past ten years (n=44). The radiological, histological, and molecular characteristics were justifiably evaluated and analyzed in our sample.

    RESULTS: The overall progression-free survival after one year was noticed among 27 cases (≈44%) and the non-specific five-year survival was seen in 31 cases (≈70%) after a five-year follow-up. SHH and WNT had the best outcomes, while group 3 showed the worst outcomes.

    CONCLUSION: Our findings did not support the association between most of the typical MRI characteristics and survival rate. We further established that SHH and WNT biological types have a better prognosis. There was no association observed between the radiographic features, specifically the location, and the molecular subtype.

  18. Fauzi MFA, Chen W, Knight D, Hampel H, Frankel WL, Gurcan MN
    J Med Syst, 2019 Dec 18;44(2):38.
    PMID: 31853654 DOI: 10.1007/s10916-019-1515-y
    Tumor budding is defined as the presence of single tumor cells or small tumor clusters (less than five cells) that 'bud' from the invasive front of the main tumor. Tumor budding (TB) has recently emerged as an important adverse prognostic factor for many different cancer types. In colorectal carcinoma (CRC), tumor budding has been independently associated with lymph node metastasis and poor outcome. Pathologic assessment of tumor budding by light microscopy requires close evaluation of tumor invasive front on intermediate to high power magnification, entailing locating the 'hotspot' of tumor budding, counting all TB in one high power field, and generating a tumor budding score. By automating these time-consuming tasks, computer-assisted image analysis tools can be helpful for daily pathology practice, since tumor budding reporting is now recommended on select cases. In this paper, we report our work on the development of a tumor budding detection system in CRC from whole-slide Cytokeratin AE1/3 images, based on de novo computer algorithm that automates morphometric analysis of tumor budding.
  19. Sayyed RZ, Shaikh SS, Wani SJ, Rehman MT, Al Ajmi MF, Haque S, et al.
    Molecules, 2021 Apr 22;26(9).
    PMID: 33922162 DOI: 10.3390/molecules26092443
    The present study was aimed to evaluate the suitability of agro-wastes and crude vegetable oils for the cost-effective production of poly-β-hydroxybutyrate (PHB), to evaluate growth kinetics and PHB production in Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 with these carbon substrates and to study the biodegradation of PHB accumulated by these cultures. Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 accumulates higher amounts of PHB corn (79.90% of dry cell mass) and rice straw (66.22% of dry cell mass) medium respectively. The kinetic model suggests that the Pseudomonas sp. RZS1 follows the Monod model more closely than A. faecalis RZS4. Both the cultures degrade their PHB extract under the influence of PHB depolymerase. Corn waste and rice straw appear as the best and cost-effective substrates for the sustainable production of PHB from Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1. The biopolymer accumulated by these organisms is biodegradable in nature. The agro-wastes and crude vegetable oils are good and low-cost sources of nutrients for the growth and production of PHB and other metabolites. Their use would lower the production cost of PHB and the low-cost production will reduce the sailing price of PHB-based products. This would promote the large-scale commercialization and popularization of PHB as an ecofriendly bioplastic/biopolymer.
  20. Jafari S, Goh YM, Rajion MA, Jahromi MF, Ahmad YH, Ebrahimi M
    Anim Sci J, 2017 Feb;88(2):267-276.
    PMID: 27345820 DOI: 10.1111/asj.12634
    Papaya leaf methanolic extract (PLE) at concentrations of 0 (CON), 5 (LLE), 10 (MLE) and 15 (HLE) mg/250 mg dry matter (DM) with 30 mL buffered rumen fluid were incubated for 24 h to identify its effect on in vitro ruminal methanogenesis and ruminal biohydrogenation (BH). Total gas production was not affected (P > 0.05) by addition of PLE compared to the CON at 24 h of incubation. Methane (CH4 ) production (mL/250 mg DM) decreased (P 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links