Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Pandey M, Mohamad N, Amin MC
    Mol Pharm, 2014 Oct 6;11(10):3596-608.
    PMID: 25157890 DOI: 10.1021/mp500337r
    The objective of this study is to synthesize and evaluate acute toxicity of the bacterial cellulose (BC)/acrylamide (Am) hydrogels as noncytotoxic and biocompatible oral drug delivery vehicles. A novel series of solubilized BC/Am hydrogels were synthesized using a microwave irradiation method. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), swelling ratio, porosity, drug release, and in vitro and in vivo biocompatibility experiments. FTIR spectra revealed that the BC crystallinity and gel fraction decreased as the NaOH concentration increased from 2% to 10% w/v, whereas the optical transparency, pH sensitivity, and porosity were enhanced with increasing alkali concentration. Theophylline was used as a model drug for drug loading and release studies. The percentage of drug released was higher at pH 7.4 compared to pH 1.5. In vitro cytotoxicity and hemolytic tests indicated that the BC/Am hydrogel is noncytotoxic and hemocompatible. Results of acute oral toxicity tests on ICR mice suggested that the hydrogels are nontoxic up to 2000 mg/kg when administered orally, as no toxic response or histopathological changes were observed in comparison to control mice. The results of this study demonstrated that the pH-sensitive smart hydrogel makes it a possible safe carrier for oral drug delivery.
  2. Pandey M, Choudhury H, Verma RK, Chawla V, Bhattamisra SK, Gorain B, et al.
    CNS Neurol Disord Drug Targets, 2020;19(9):648-662.
    PMID: 32819251 DOI: 10.2174/1871527319999200819095620
    Alzheimer Association Report (2019) stated that the 6th primary cause of death in the USA is Alzheimer's Disease (AD), which leads to behaviour and cognitive impairment. Nearly 5.8 million peoples of all ages in the USA have suffered from this disease, including 5.6 million elderly populations. The statistics of the progression of this disease is similar to the global scenario. Still, the treatment of AD is limited to a few conventional oral drugs, which often fail to deliver an adequate amount of the drug in the brain. The reduction in the therapeutic efficacy of an anti-AD drug is due to poor solubility, existence to the blood-brain barrier and low permeability. In this context, nasal drug delivery emerges as a promising route for the delivery of large and small molecular drugs for the treatment of AD. This promising pathway delivers the drug directly into the brain via an olfactory route, which leads to the low systemic side effect, enhanced bioavailability, and higher therapeutic efficacy. However, few setbacks, such as mucociliary clearance and poor drug mucosal permeation, limit its translation from the laboratory to the clinic. The above stated limitation could be overcome by the adaption of nanoparticle as a drug delivery carrier, which may lead to prolong delivery of drugs with better permeability and high efficacy. This review highlights the latest work on the development of promising Nanoparticles (NPs) via the intranasal route for the treatment of AD. Additionally, the current update in this article will draw the attention of the researcher working on these fields and facing challenges in practical applicability.
  3. Kannan S, Chellappan DK, Kow CS, Ramachandram DS, Pandey M, Mayuren J, et al.
    Health Sci Rep, 2023 Nov;6(11):e1642.
    PMID: 37915365 DOI: 10.1002/hsr2.1642
    BACKGROUND AND AIMS: Diabetes is a global concern. This article took a closer look at diabetes and precision medicine.

    METHODS: A literature search of studies related to the use of precision medicine in diabetes care was conducted in various databases (PubMed, Google Scholar, and Scopus).

    RESULTS: Precision medicine encompasses the integration of a wide array of personal data, including clinical, lifestyle, genetic, and various biomarker information. Its goal is to facilitate tailored treatment approaches using contemporary diagnostic and therapeutic techniques that specifically target patients based on their genetic makeup, molecular markers, phenotypic traits, or psychosocial characteristics. This article not only highlights significant advancements but also addresses key challenges, particularly focusing on the technologies that contribute to the realization of personalized and precise diabetes care.

    CONCLUSION: For the successful implementation of precision diabetes medicine, collaboration and coordination among multiple stakeholders are crucial.

  4. Moorthy R, Bhattamisra SK, Pandey M, Mayuren J, Kow CS, Candasamy M
    Expert Rev Endocrinol Metab, 2024 Mar;19(2):141-154.
    PMID: 38347803 DOI: 10.1080/17446651.2024.2307526
    INTRODUCTION: Type 2 diabetes (T2D) presents significant global health and economic challenges, contributing to complications such as stroke, cardiovascular disease, kidney dysfunction, and cancer. The current review explores the crucial role of mitochondria, essential for fuel metabolism, in diabetes-related processes.

    AREAS COVERED: Mitochondrial deficits impact insulin-resistant skeletal muscles, adipose tissue, liver, and pancreatic β-cells, affecting glucose and lipid balance. Exercise emerges as a key factor in enhancing mitochondrial function, thereby reducing insulin resistance. Additionally, the therapeutic potential of mitochondrial uncoupling, which generates heat instead of ATP, is discussed. We explore the intricate link between mitochondrial function and diabetes, investigating genetic interventions to mitigate diabetes-related complications. We also cover the impact of insulin deficiency on mitochondrial function, the role of exercise in addressing mitochondrial defects in insulin resistance, and the potential of mitochondrial uncoupling. Furthermore, a comprehensive analysis of Mitochondrial Replacement Therapies (MRT) techniques is presented.

    EXPERT OPINION: MRTs hold promise in preventing the transmission of mitochondrial disease. However, addressing ethical, regulatory, and technical considerations is crucial. Integrating mitochondrial-based treatments requires a careful balance between innovation and safety. Ethical dimensions and regulatory aspects of MRT are examined, emphasizing collaborative efforts for the responsible advancement of human health.

  5. Pandey M, Choudhury H, Gorain B, Tiong SQ, Wong GYS, Chan KX, et al.
    Gels, 2021 Nov 16;7(4).
    PMID: 34842689 DOI: 10.3390/gels7040218
    Skin cancer, one of the most prevalent cancers worldwide, has demonstrated an alarming increase in prevalence and mortality. Hence, it is a public health issue and a high burden of disease, contributing to the economic burden in its treatment. There are multiple treatment options available for skin cancer, ranging from chemotherapy to surgery. However, these conventional treatment modalities possess several limitations, urging the need for the development of an effective and safe treatment for skin cancer that could provide targeted drug delivery and site-specific tumor penetration and minimize unwanted systemic toxicity. Therefore, it is vital to understand the critical biological barriers involved in skin cancer therapeutics for the optimal development of the formulations. Various nanocarriers for targeted delivery of chemotherapeutic drugs have been developed and extensively studied to overcome the limitations faced by topical conventional dosage forms. A site-specific vesicular drug delivery system appears to be an attractive strategy in topical drug delivery for the treatment of skin malignancies. In this review, vesicular drug delivery systems, including liposomes, niosomes, ethosomes, and transfersomes in developing novel drug delivery for skin cancer therapeutics, are discussed. Firstly, the prevalence statistics, current treatments, and limitations of convention dosage form for skin cancer treatment are discussed. Then, the common type of nanocarriers involved in the research for skin cancer treatment are summarized. Lastly, the utilization of vesicular drug delivery systems in delivering chemotherapeutics is reviewed and discussed, along with their beneficial aspects over other nanocarriers, safety concerns, and clinical aspects against skin cancer treatment.
  6. Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, et al.
    CNS Neurol Disord Drug Targets, 2020;19(3):174-183.
    PMID: 32418534 DOI: 10.2174/1871527319666200518102130
    The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords "insulin"; "insulin resistance"; "Alzheimer's disease"; "Parkinson's disease" in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.
  7. Gorain B, Rajeswary DC, Pandey M, Kesharwani P, Kumbhar SA, Choudhury H
    Curr Pharm Des, 2020;26(19):2233-2246.
    PMID: 32167424 DOI: 10.2174/1381612826666200313125613
    Increasing incidence of demented patients around the globe with limited FDA approved conventional therapies requires pronounced research attention for the management of the demented conditions in the growing elderly population in the developing world. Dementia of Alzheimer's type is a neurodegenerative disorder, where conventional therapies are available for symptomatic treatment of the disease but possess several peripheral toxicities due to lack of brain targeting. Nanotechnology based formulations via intranasal (IN) routes of administration have shown to improve therapeutic efficacy of several therapeutics via circumventing blood-brain barrier and limited peripheral exposure. Instead of numerous research on polymeric and lipid-based nanocarriers in the improvement of therapeutic chemicals and peptides in preclinical research, a step towards clinical studies still requires wide-ranging data on safety and efficacy. This review has focused on current approaches of nanocarrierbased therapies on Alzheimer's disease (AD) via the IN route for polymeric and lipid-based nanocarriers for the improvement of therapeutic efficacy and safety. Moreover, the clinical application of IN nanocarrier-based delivery of therapeutics to the brain needs a long run; however, proper attention towards AD therapy via this platform could bring a new era for the AD patients.
  8. Gorain B, Al-Dhubiab BE, Nair A, Kesharwani P, Pandey M, Choudhury H
    Curr Pharm Des, 2021;27(43):4404-4415.
    PMID: 34459377 DOI: 10.2174/1381612827666210830095941
    The advancement of delivery tools for therapeutic agents has brought several novel formulations with increased drug loading, sustained release, targeted delivery, and prolonged efficacy. Amongst the several novel delivery approaches, multivesicular liposome has gained potential interest because this delivery system possesses the above advantages. In addition, this multivesicular liposomal delivery prevents degradation of the entrapped drug within the physiological environment while administered. The special structure of the vesicles allowed successful entrapment of hydrophobic and hydrophilic therapeutic agents, including proteins and peptides. Furthermore, this novel formulation could maintain the desired drug concentration in the plasma for a prolonged period, which helps to reduce the dosing frequencies, improve bioavailability, and safety. This tool could also provide stability of the formulation, and finally gaining patient compliance. Several multivesicular liposomes received approval for clinical research, while others are at different stages of laboratory research. In this review, we have focused on the preparation of multivesicular liposomes along with their application in different ailments for the improvement of the performance of the entrapped drug. Moreover, the challenges of delivering multivesicular vesicles have also been emphasized. Overall, it could be inferred that multivesicular liposomal delivery is a platform of advanced drug delivery with improved efficacy and safety.
  9. Pandey M, Wen PX, Ning GM, Xing GJ, Wei LM, Kumar D, et al.
    Nanomedicine (Lond), 2022 Oct;17(24):1871-1889.
    PMID: 36695306 DOI: 10.2217/nnm-2022-0234
    Ductal carcinoma in situ describes the most commonly occurring, noninvasive malignant breast disease, which could be the leading factor in invasive breast cancer. Despite remarkable advancements in treatment options, poor specificity, low bioavailability and dose-induced toxicity of chemotherapy are the main constraint. A unique characteristic of nanocarriers may overcome these problems. Moreover, the intraductal route of administration serves as an alternative approach. The direct nanodrug delivery into mammary ducts results in the accumulation of anticancer agents at targeted tissue for a prolonged period with high permeability, significantly decreasing the tumor size and improving the survival rate. This review focuses mainly on the intraductal delivery of nanocarriers in treating ductal carcinoma in situ, together with potential clinical translational research.
  10. Hussain MS, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, et al.
    J Biochem Mol Toxicol, 2023 Nov;37(11):e23482.
    PMID: 37530602 DOI: 10.1002/jbt.23482
    Inflammation is an essential immune response that helps fight infections and heal tissues. However, chronic inflammation has been linked to several diseases, including cancer, autoimmune disorders, cardiovascular diseases, and neurological disorders. This has increased interest in finding natural substances that can modulate the immune system inflammatory signaling pathways to prevent or treat these diseases. Luteolin is a flavonoid found in many fruits, vegetables, and herbs. It has been shown to have anti-inflammatory effects by altering signaling pathways in immune cells. This review article discusses the current research on luteolin's role as a natural immune system modulator of inflammatory signaling mechanisms, such as its effects on nuclear factor-kappa B, mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and inflammasome signaling processes. The safety profile of luteolin and its potential therapeutic uses in conditions linked to inflammation are also discussed. Overall, the data point to Luteolin's intriguing potential as a natural regulator of immune system inflammatory signaling processes. More research is needed to fully understand its mechanisms of action and possible therapeutic applications.
  11. Jain N, Nagaich U, Pandey M, Chellappan DK, Dua K
    EPMA J, 2022 Dec;13(4):561-580.
    PMID: 36505888 DOI: 10.1007/s13167-022-00304-2
    In the current era of medical revolution, genomic testing has guided the healthcare fraternity to develop predictive, preventive, and personalized medicine. Predictive screening involves sequencing a whole genome to comprehensively deliver patient care via enhanced diagnostic sensitivity and specific therapeutic targeting. The best example is the application of whole-exome sequencing when identifying aberrant fetuses with healthy karyotypes and chromosomal microarray analysis in complicated pregnancies. To fit into today's clinical practice needs, experimental system biology like genomic technologies, and system biology viz., the use of artificial intelligence and machine learning is required to be attuned to the development of preventive and personalized medicine. As diagnostic techniques are advancing, the selection of medical intervention can gradually be influenced by a person's genetic composition or the cellular profiling of the affected tissue. Clinical genetic practitioners can learn a lot about several conditions from their distinct facial traits. Current research indicates that in terms of diagnosing syndromes, facial analysis techniques are on par with those of qualified therapists. Employing deep learning and computer vision techniques, the face image assessment software DeepGestalt measures resemblances to numerous of disorders. Biomarkers are essential for diagnostic, prognostic, and selection systems for developing personalized medicine viz. DNA from chromosome 21 is counted in prenatal blood as part of the Down's syndrome biomarker screening. This review is based on a detailed analysis of the scientific literature via a vigilant approach to highlight the applicability of predictive diagnostics for the development of preventive, targeted, personalized medicine for clinical application in the framework of predictive, preventive, and personalized medicine (PPPM/3 PM). Additionally, targeted prevention has also been elaborated in terms of gene-environment interactions and next-generation DNA sequencing. The application of 3 PM has been highlighted by an in-depth analysis of cancer and cardiovascular diseases. The real-time challenges of genome sequencing and personalized medicine have also been discussed.
  12. Hussain Z, Arooj M, Malik A, Hussain F, Safdar H, Khan S, et al.
    Artif Cells Nanomed Biotechnol, 2018;46(sup2):1015-1024.
    PMID: 29873531 DOI: 10.1080/21691401.2018.1478420
    Development and formulation of an efficient and safe therapeutic regimen for cancer theranostics are dynamically challenging. The use of mono-therapeutic cancer regimen is generally restricted to optimal clinical applications, on account of drug resistance and cancer heterogeneity. Combinatorial treatments can employ multi-therapeutics for synergistic anticancer efficacy whilst reducing the potency of individual moieties and diminishing the incidence of associated adverse effects. The combo-delivery of nanotherapeutics can optimize anti-tumor efficacy while reversing the incidence of drug resistance, aiming to homogenize pharmacological profile of drugs, enhance circulatory time, permit targeted drug accumulation, achieve multi-target dynamic approach, optimize target-specific drug binding and ensure sustained drug release at the target site. Numerous nanomedicines/nanotherapeutics have been developed by having dynamic physicochemical, pharmaceutical and pharmacological implications. These innovative delivery approaches have displayed specialized treatment effects, alone or in combination with conventional anticancer approaches (photodynamic therapy, radiotherapy and gene therapy), while reversing drug resistance and potential off-target effects. The current review presents a comprehensive overview of nanocarrier aided multi-drug therapies alongside recent advancements, future prospects, and the pivotal requirements for interdisciplinary research.
  13. Choudhury H, Chellappan DK, Sengupta P, Pandey M, Gorain B
    Curr Pharm Des, 2019;25(26):2808-2827.
    PMID: 31309883 DOI: 10.2174/1381612825666190712181955
    The ubiquitous signaling nucleoside molecule, adenosine is found in different cells of the human body to provide its numerous pharmacological role. The associated actions of endogenous adenosine are largely dependent on conformational change of the widely expressed heterodimeric G-protein-coupled A1, A2A, A2B, and A3 adenosine receptors (ARs). These receptors are well conserved on the surface of specific cells, where potent neuromodulatory properties of this bioactive molecule reflected by its easy passage through the rigid blood-brainbarrier, to simultaneously act on the central nervous system (CNS). The minimal concentration of adenosine in body fluids (30-300 nM) is adequate to exert its neuromodulatory action in the CNS, whereas the modulatory effect of adenosine on ARs is the consequence of several neurodegenerative diseases. Modulatory action concerning the activation of such receptors in the CNS could be facilitated towards neuroprotective action against such CNS disorders. Our aim herein is to discuss briefly pathophysiological roles of adenosine on ARs in the modulation of different CNS disorders, which could be focused towards the identification of potential drug targets in recovering accompanying CNS disorders. Researches with active components with AR modulatory action have been extended and already reached to the bedside of the patients through clinical research in the improvement of CNS disorders. Therefore, this review consist of recent findings in literatures concerning the impact of ARs on diverse CNS disease pathways with the possible relevance to neurodegeneration.
  14. Zeeshan F, Madheswaran T, Pandey M, Gorain B
    Curr Pharm Des, 2018;24(42):5019-5028.
    PMID: 30621558 DOI: 10.2174/1381612825666190101111525
    BACKGROUND: The conventional dosage forms cannot be administered to all patients because of interindividual variability found among people of different race coupled with different metabolism and cultural necessities. Therefore, to address this global issue there is a growing focus on the fabrication of new drug delivery systems customised to individual needs. Medicinal products printed using 3-D technology are transforming the current medicine business to a plausible alternative of conventional medicines.

    METHODS: The PubMed database and Google scholar were browsed by keywords of 3-D printing, drug delivery, and personalised medicine. The data about techniques employed in the manufacturing of 3-D printed medicines and the application of 3-D printing technology in the fabrication of individualised medicine were collected, analysed and discussed.

    RESULTS: Numerous techniques can fabricate 3-D printed medicines however, printing-based inkjet, nozzle-based deposition and laser-based writing systems are the most popular 3-D printing methods which have been employed successfully in the development of tablets, polypills, implants, solutions, nanoparticles, targeted and topical dug delivery. In addition, the approval of Spritam® containing levetiracetam by FDA as the primary 3-D printed drug product has boosted its importance. However, some drawbacks such as suitability of manufacturing techniques and the available excipients for 3-D printing need to be addressed to ensure simple, feasible, reliable and reproducible 3-D printed fabrication.

    CONCLUSION: 3-D printing is a revolutionary in pharmaceutical technology to cater the present and future needs of individualised medicines. Nonetheless, more investigations are required on its manufacturing aspects in terms cost effectiveness, reproducibility and bio-equivalence.

  15. Bhattamisra SK, Siang TC, Rong CY, Annan NC, Sean EHY, Xi LW, et al.
    Curr Diabetes Rev, 2019;15(5):382-394.
    PMID: 30648511 DOI: 10.2174/1573399815666190115145702
    BACKGROUND: The incidence of diabetes is increasing steeply; the number of diabetics has doubled over the past three decades. Surprisingly, the knowledge of type 3c diabetes mellitus (T3cDM) is still unclear to the researchers, scientist and medical practitioners, leading towards erroneous diagnosis, which is sometimes misdiagnosed as type 1 diabetes mellitus (T1DM), or more frequently type 2 diabetes mellitus (T2DM). This review is aimed to outline recent information on the etiology, pathophysiology, diagnostic procedures, and therapeutic management of T3cDM patients.

    METHODS: The literature related to T3cDM was thoroughly searched from the public domains and reviewed extensively to construct this article. Further, existing literature related to the other forms of diabetes is reviewed for projecting the differences among the different forms of diabetes. Detailed and updated information related to epidemiological evidence, risk factors, symptoms, diagnosis, pathogenesis and management is structured in this review.

    RESULTS: T3cDM is often misdiagnosed as T2DM due to the insufficient knowledge differentiating between T2DM and T3cDM. The pathogenesis of T3cDM is explained which is often linked to the history of chronic pancreatitis, pancreatic cancer. Inflammation, and fibrosis in pancreatic tissue lead to damage both endocrine and exocrine functions, thus leading to insulin/glucagon insufficiency and pancreatic enzyme deficiency.

    CONCLUSION: Future advancements should be accompanied by the establishment of a quick diagnostic tool through the understanding of potential biomarkers of the disease and newer treatments for better control of the diseased condition.

  16. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Jul;112:110925.
    PMID: 32409075 DOI: 10.1016/j.msec.2020.110925
    Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
  17. Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Aug;101:596-613.
    PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005
    Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
  18. Pandey M, Choudhury H, Fern JLC, Kee ATK, Kou J, Jing JLJ, et al.
    Drug Deliv Transl Res, 2020 08;10(4):986-1001.
    PMID: 32207070 DOI: 10.1007/s13346-020-00737-0
    The involvement of recent technologies, such as nanotechnology and three-dimensional printing (3DP), in drug delivery has become the utmost importance for effective and safe delivery of potent therapeutics, and thus, recent advancement for oral drug delivery through 3DP technology has been expanded. The use of computer-aided design (CAD) in 3DP technology allows the manufacturing of drug formulation with the desired release rate and pattern. Currently, the most applicable 3DP technologies in the oral drug delivery system are inkjet printing method, fused deposition method, nozzle-based extrusion system, and stereolithographic 3DP. In 2015, the first 3D-printed tablet was approved by the US Food and Drug Administration (FDA), and since then, it has opened up more opportunities in the discovery of formulation for the development of an oral drug delivery system. 3DP allows the production of an oral drug delivery device that enables tailor-made formulation with customizable size, shape, and release rate. Despite the advantages offered by 3DP technology in the drug delivery system, there are challenges in terms of drug stability, safety as well as applicability in the clinical sector. Nonetheless, 3DP has immense potential in the development of drug delivery devices for future personalized medicine. This article will give the recent advancement along with the challenges of 3DP techniques for the development of oral drug delivery. Graphical abstract.
  19. Wong YL, Pandey M, Choudhury H, Lim WM, Bhattamisra SK, Gorain B
    Polymers (Basel), 2021 Aug 18;13(16).
    PMID: 34451309 DOI: 10.3390/polym13162770
    Hidradenitis suppurativa (HS) has been considered an orphan disease with limited treatments available. The available topical treatment for this condition is clindamycin lotion; however, short retention and frequent application are the main setbacks. Thus, the present study aimed to attain an optimized antibacterial in situ spray formulation for the hidradenitis suppurativa skin condition, which gels once in contact with the skin surface at around 37 °C and possesses bioadhesion as well as sustained-release properties of the incorporated drug. Different concentrations of thermo-reversible gelling polymer, Pluronic F-127, were investigated along with the selected bioadhesive polymers, HPMC and SA. The optimized formulation F3 consisting of 18% Pluronic F-127 with 0.2% HPMC and 0.2% SA was characterized based on various physicochemical properties. The gelation temperature of F3 was found to be 29.0 ± 0.50 °C with a gelation time of 1.35 ± 0.40 min and a pH of 5.8. F3 had the viscosity of 178.50 ± 5.50 cP at 25 °C and 7800 ± 200 cP at 37 °C as the gel set. The optimized formulation was found to be bioadhesive and cytocompatible. Cumulative drug release was 65.05% within the time-frame of 8 h; the release pattern of the drug followed zero-order kinetics with the Higuchi release mechanism. The average zone of inhibition was found to be 43.44 ± 1.34 mm. The properties of F3 formulation reflect to improve residence time at the site of application and can enhance sustained drug release. Therefore, it could be concluded that optimized formulation has better retention and enhanced antimicrobial activity for superior efficacy against HS.
  20. Pandey M, Choudhury H, Yeun OC, Yin HM, Lynn TW, Tine CLY, et al.
    Curr Pharm Biotechnol, 2018;19(4):276-292.
    PMID: 29874994 DOI: 10.2174/1389201019666180605125234
    BACKGROUND: Targeting chemotherapeutic agents to the tumor tissues and achieving accumulation with ideal release behavior for desired therapy requires an ideal treatment strategy to inhibit division of rapid growing cancerous cells and as an outcome improve patient's quality of life. However, majority of the available anticancer therapies are well known for their systemic toxicities and multidrug resistance.

    METHODS: Application of nanotechnology in medicine have perceived a great evolution during past few decades. Nanoemulsion, submicron sized thermodynamically stable distribution of two immiscible liquids, has gained extensive importance as a nanocarrier to improve chemotherapies seeking to overcome the limitations of drug solubilization, improving systemic delivery of the chemotherapeutics to the site of action to achieve a promising inhibitory in tumor growth profile with reduced systemic toxicity.

    RESULTS AND CONCLUSION: This review has focused on potential application of nanoemulsion in the translational research and its role in chemotherapy using oral, parenteral and transdermal route to enhance systemic availability of poorly soluble drug. In summary, nanoemulsion is a multifunctional nanocarrier capable of enhancing drug delivery potential of cytotoxic agents, thereby, can improve the outcomes of cancer treatment by increasing the life-span of the patient and quality of life, however, further clinical research and characterization of interactive reactions should need to be explored.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links