Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Mohd-Yusuf Y, Phipps ME, Chow SK, Yeap SS
    Immunol Lett, 2011 Sep 30;139(1-2):68-72.
    PMID: 21658414 DOI: 10.1016/j.imlet.2011.05.001
    We investigated the association of the HLA genes in Malaysian patients with systemic lupus erythematosus (SLE) and their associations with the clinical manifestations in 160 SLE patients (99 Chinese and 61 Malays) and 107 healthy control individuals (58 Chinese and 49 Malays) were studied. Sequence specific primer amplification (PCR-SSP) phototyping techniques were used to analyse 25 HLA-A allele groups, 31 HLA-DR allele groups and 9 HLA-DQ allele groups. Appreciable increases in allele frequencies of HLA-A*11, DRB1*0701, DRB1*1601-1606, DRB5*01-02 and DQB1*05, and decrease in HLA-DRB1*1101-1121, 1411, DRB1*1201-3, DRB1*1301-22, DRB3*0101, 0201, 0202, 0203, 0301 and DQB1*0301, 1304 in SLE patients compared with healthy control individuals. However, after Bonferroni correction (p(c)<0.05) only HLA-A*1101, 1102, DRB5*01-02, DQB1*05, DRB1*1201-3, DRB3*0101, 0201, 0202, 0203, 0301 and DQB1*0301, 0304 remained significant. Allele frequencies of DRB1*0701 and DRB4*0101101, 0102, 0103, DQB1*05, DRB1*1301-22, DRB3*0101, 0201, 0202, 0203, 0301 and DQB1*0301, 0304 were significantly increased in Malay SLE patients compared with healthy control individuals. In contrast, Chinese SLE patients had increased allele frequencies of DRB1*1601-1606, DQB1*05, DRB1*1201-3, DRB3*0101, 0201, 0202, 0203, 0301, DRB3*0101, 0201, 0202, 0203, 0301 and DQB1*0301, 0304 compared with healthy control individuals. HLA-A*6801-02 and DRB1*1601-1606 frequencies appeared elevated in a subset of patients with serositis and DRB1* 0401-1122 frequency was elevated in those displaying neurologic disorder. However, unequivocal evidence of these associations would require investigation of substantially larger cohorts. On the whole, our findings suggest that HLA allele associations with SLE are race specific in Malays and Chinese.
    Study site: SLE clinic, University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
  2. Deng L, Hoh BP, Lu D, Fu R, Phipps ME, Li S, et al.
    Hum Genet, 2014 Sep;133(9):1169-85.
    PMID: 24916469 DOI: 10.1007/s00439-014-1459-8
    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration history in Southeast Asia.
  3. Hoh BP, Zhang X, Deng L, Yuan K, Yew CW, Saw WY, et al.
    Genome Biol Evol, 2020 12 06;12(12):2245-2257.
    PMID: 33022050 DOI: 10.1093/gbe/evaa207
    North Borneo (NB) is home to more than 40 native populations. These natives are believed to have undergone local adaptation in response to environmental challenges such as the mosquito-abundant tropical rainforest. We attempted to trace the footprints of natural selection from the genomic data of NB native populations using a panel of ∼2.2 million genome-wide single nucleotide polymorphisms. As a result, an ∼13-kb haplotype in the Major Histocompatibility Complex Class II region encompassing candidate genes TSBP1-BTNL2-HLA-DRA was identified to be undergoing natural selection. This putative signature of positive selection is shared among the five NB populations and is estimated to have arisen ∼5.5 thousand years (∼220 generations) ago, which coincides with the period of Austronesian expansion. Owing to the long history of endemic malaria in NB, the putative signature of positive selection is postulated to be driven by Plasmodium parasite infection. The findings of this study imply that despite high levels of genetic differentiation, the NB populations might have experienced similar local genetic adaptation resulting from stresses of the shared environment.
  4. Deng L, Lou H, Zhang X, Thiruvahindrapuram B, Lu D, Marshall CR, et al.
    BMC Genomics, 2019 Nov 12;20(1):842.
    PMID: 31718558 DOI: 10.1186/s12864-019-6226-8
    BACKGROUND: Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated.

    RESULTS: We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10- 8 - 1.33 × 10- 8, 1.0 × 10- 9 - 2.9 × 10- 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples.

    CONCLUSION: Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.

  5. Fu R, Mokhtar SS, Phipps ME, Hoh BP, Xu S
    Eur J Hum Genet, 2018 06;26(6):886-897.
    PMID: 29476164 DOI: 10.1038/s41431-018-0120-8
    Copy number variations (CNVs) are genomic structural variations that result from the deletion or duplication of large genomic segments. The characterization of CNVs is largely underrepresented, particularly those of indigenous populations, such as the Orang Asli in Peninsular Malaysia. In the present study, we first characterized the genome-wide CNVs of four major native populations from Peninsular Malaysia, including the Malays and three Orang Asli populations; namely, Proto-Malay, Senoi, and Negrito (collectively called PM). We subsequently assessed the distribution of CNVs across the four populations. The resulting global CNV map revealed 3102 CNVs, with an average of more than 100 CNVs per individual. We identified genes harboring CNVs that are highly differentiated between PM and global populations, indicating that these genes are predominantly enriched in immune responses and defense functions, including APOBEC3A_B, beta-defensin genes, and CCL3L1, followed by other biological functions, such as drug and toxin metabolism and responses to radiation, suggesting some attributions between CNV variations and adaptations of the PM groups to the local environmental conditions of tropical rainforests.
  6. Malaspinas AS, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, et al.
    Nature, 2016 Oct 13;538(7624):207-214.
    PMID: 27654914 DOI: 10.1038/nature18299
    The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama-Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25-40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10-32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama-Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51-72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.
  7. McColl H, Racimo F, Vinner L, Demeter F, Gakuhari T, Moreno-Mayar JV, et al.
    Science, 2018 07 06;361(6397):88-92.
    PMID: 29976827 DOI: 10.1126/science.aat3628
    The human occupation history of Southeast Asia (SEA) remains heavily debated. Current evidence suggests that SEA was occupied by Hòabìnhian hunter-gatherers until ~4000 years ago, when farming economies developed and expanded, restricting foraging groups to remote habitats. Some argue that agricultural development was indigenous; others favor the "two-layer" hypothesis that posits a southward expansion of farmers giving rise to present-day Southeast Asian genetic diversity. By sequencing 26 ancient human genomes (25 from SEA, 1 Japanese Jōmon), we show that neither interpretation fits the complexity of Southeast Asian history: Both Hòabìnhian hunter-gatherers and East Asian farmers contributed to current Southeast Asian diversity, with further migrations affecting island SEA and Vietnam. Our results help resolve one of the long-standing controversies in Southeast Asian prehistory.
  8. Jahan NK, Ahmad MP, Dhanoa A, Meng CY, Ming LW, Reidpath DD, et al.
    Infect Dis Poverty, 2016;5(1):76.
    PMID: 27510731 DOI: 10.1186/s40249-016-0172-3
    Globally, dengue infections constitute a significant public health burden. In recent decades, Malaysia has become a dengue hyper-endemic country with the co-circulation of the four dengue virus serotypes. The cyclical dominance of sub-types contributes to a pattern of major outbreaks. The consequences can be observed in the rising incidence of reported dengue cases and dengue related deaths. Understanding the complex interaction of the dengue virus, its human hosts and the mosquito vectors at the community level may help develop strategies for addressing the problem.
  9. Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, et al.
    Am J Hum Genet, 2011 Oct 07;89(4):516-28.
    PMID: 21944045 DOI: 10.1016/j.ajhg.2011.09.005
    It has recently been shown that ancestors of New Guineans and Bougainville Islanders have inherited a proportion of their ancestry from Denisovans, an archaic hominin group from Siberia. However, only a sparse sampling of populations from Southeast Asia and Oceania were analyzed. Here, we quantify Denisova admixture in 33 additional populations from Asia and Oceania. Aboriginal Australians, Near Oceanians, Polynesians, Fijians, east Indonesians, and Mamanwa (a "Negrito" group from the Philippines) have all inherited genetic material from Denisovans, but mainland East Asians, western Indonesians, Jehai (a Negrito group from Malaysia), and Onge (a Negrito group from the Andaman Islands) have not. These results indicate that Denisova gene flow occurred into the common ancestors of New Guineans, Australians, and Mamanwa but not into the ancestors of the Jehai and Onge and suggest that relatives of present-day East Asians were not in Southeast Asia when the Denisova gene flow occurred. Our finding that descendants of the earliest inhabitants of Southeast Asia do not all harbor Denisova admixture is inconsistent with a history in which the Denisova interbreeding occurred in mainland Asia and then spread over Southeast Asia, leading to all its earliest modern human inhabitants. Instead, the data can be most parsimoniously explained if the Denisova gene flow occurred in Southeast Asia itself. Thus, archaic Denisovans must have lived over an extraordinarily broad geographic and ecological range, from Siberia to tropical Asia.
  10. Jinam TA, Phipps ME, Aghakhanian F, Majumder PP, Datar F, Stoneking M, et al.
    Genome Biol Evol, 2017 08 01;9(8):2013-2022.
    PMID: 28854687 DOI: 10.1093/gbe/evx118
    Human presence in Southeast Asia dates back to at least 40,000 years ago, when the current islands formed a continental shelf called Sundaland. In the Philippine Islands, Peninsular Malaysia, and Andaman Islands, there exist indigenous groups collectively called Negritos whose ancestry can be traced to the "First Sundaland People." To understand the relationship between these Negrito groups and their demographic histories, we generated genome-wide single nucleotide polymorphism data in the Philippine Negritos and compared them with existing data from other populations. Phylogenetic tree analyses show that Negritos are basal to other East and Southeast Asians, and that they diverged from West Eurasians at least 38,000 years ago. We also found relatively high traces of Denisovan admixture in the Philippine Negritos, but not in the Malaysian and Andamanese groups, suggesting independent introgression and/or parallel losses involving Denisovan introgressed regions. Shared genetic loci between all three Negrito groups could be related to skin pigmentation, height, facial morphology and malarial resistance. These results show the unique status of Negrito groups as descended from the First Sundaland People.
  11. Lee CZ, Zoqratt MZHM, Phipps ME, Barr JJ, Lal SK, Ayub Q, et al.
    Sci Rep, 2022 Feb 03;12(1):1824.
    PMID: 35115615 DOI: 10.1038/s41598-022-05656-3
    The human gut contains a complex microbiota dominated by bacteriophages but also containing other viruses and bacteria and fungi. There are a growing number of techniques for the extraction, sequencing, and analysis of the virome but currently no standardized protocols. This study established an effective workflow for virome analysis to investigate the virome of stool samples from two understudied ethnic groups from Malaysia: the Jakun and Jehai Orang Asli. By using the virome extraction and analysis workflow with the Oxford Nanopore Technology, long-read sequencing successfully captured close to full-length viral genomes. The virome composition of the two indigenous Malaysian communities were remarkably different from those found in other parts of the world. Additionally, plant viruses found in the viromes of these individuals were attributed to traditional food-seeking methods. This study establishes a human gut virome workflow and extends insights into the healthy human gut virome, laying the groundwork for comparative studies.
  12. Chai HC, Chua KH, Lim SK, Phipps ME
    J Immunol Res, 2014;2014:529167.
    PMID: 24741605 DOI: 10.1155/2014/529167
    Polymorphisms in genes involved in toll-like receptor/interferon signalling pathways have been reported previously to be associated with SLE in many populations. This study aimed to investigate the role of seven single nucleotide polymorphisms within TNFAIP3, STAT4, and IRF5, which are involved in upstream and downstream pathways of type I interferon production, in SLE in the South East Asian populations. Genotyping of 360 Malaysian SLE patients and 430 normal healthy individuals revealed that minor alleles of STAT4 rs7574865 and rs10168266 were associated with elevated risk of SLE in the Chinese and Malay patients, respectively (P = 0.028, odds ratio (OR) = 1.42; P = 0.035, OR = 1.80, respectively). Polymorphisms in TNFAIP3 and IRF5 did not show significant associations with SLE in any of the ethnicities. Combined analysis of the Malays, Chinese, and Indians for each SNP indicated that STAT4 rs10168266 was significantly associated with the Malaysian SLE as a whole (P = 0.014; OR = 1.435). The meta-analysis of STAT4 rs10168266, which combined the data of other studies and this study, further confirmed its importance as the risk factor for SLE by having pooled OR of 1.559 and P value of <0.001.
    Study site: University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
  13. Ahmad B, Khalid BA, Quek KF, Anuar Z, Phipps ME
    Med J Malaysia, 2013 Aug;68(4):309-14.
    PMID: 24145258 MyJurnal
    A cross-sectional study involving seven Orang Asli
    settlements located in three different states in Peninsular
    Malaysia; Johor, Selangor and Perak.
  14. Jinam TA, Saitou N, Edo J, Mahmood A, Phipps ME
    Tissue Antigens, 2010 Feb;75(2):151-8.
    PMID: 20003135 DOI: 10.1111/j.1399-0039.2009.01417.x
    This is the first report of high-resolution human leukocyte antigen (HLA) typing in four indigenous groups in Malaysia. A total of 99 normal, healthy participants representing the Negrito (Jehai and Kensiu), Proto-Malay (Temuan) and a native group of Borneo (Bidayuh) were typed for HLA-A, -B, -DRB1 and -DQB1 genes using sequence-based typing. Eleven HLA-A, 26 HLA-B, 16 HLA-DRB1 and 14 HLA-DQB1 alleles were detected, including a new allele, HLA-B*3589 in the Jehai. Highly frequent alleles were A*2407, B*1513, B*1801, DRB1*0901, DRB1*1202, DRB1*1502, DQB1*0303 and DQB1*0502. Principal component analysis based on high-resolution HLA-A, -B and -DRB1 allele frequencies showed close affinities among all four groups, including the Negritos, with other Southeast Asian populations. These results showed the scope of HLA diversity in these indigenous minority groups and may prove beneficial for future disease association, anthropological and forensic studies.
  15. Yeap SS, Mohd A, Kumar G, Kong KF, Chow SK, Goh EM, et al.
    Autoimmunity, 2007 May;40(3):187-90.
    PMID: 17453717 DOI: 10.1080/08916930701233755
    OBJECTIVE:
    To assess the relationship between the HLA-DRB1 genes with disease severity as assessed by radiological erosions in Malaysian patients with rheumatoid arthritis (RA).

    METHODS:
    In this cross-sectional study, we studied 61 RA patients who fulfilled the ACR criteria for the diagnosis of RA. HLA-DRB1 genotyping was performed by sequence specific primer (SSP) - PCR. Radiological grading and erosive score of the hands and wrists was calculated according to the Larsen-Dale method. Demographic data and treatment given to the patients were obtained from their case records.

    RESULTS:
    Fifty-six females and five males were studied from three ethnic groups. In 57 patients with erosions, rheumatoid factor was detected in 80%, HLA-DR4 in 40%, HLA-DRB1*0405 in 24% and shared epitope (SE) in 31%. The median delay in starting DMARDs was 24 months. The presence of rheumatoid factor, HLA-DR4 and HLA-DRB1*0405 were not significantly associated with a worse erosive score. Patients who possessed the SE had a higher erosive scores, compared to those who did not (p = 0.05). Concurrently, a delay in starting DMARD was associated with a high erosive score (p = 0.023, r = 0.348). However, after adjustment for the delay in starting DMARD, SE was no longer significantly associated with the erosive score.

    CONCLUSIONS:
    In these patients, the delay in starting DMARDs had a greater influence on the erosive score than SE alone. Whilst we cannot discount the contribution of the SE presence, we would advocate early usage of DMARDs in every RA patient to reduce joint erosions and future disability.
  16. Aghakhanian F, Yunus Y, Naidu R, Jinam T, Manica A, Hoh BP, et al.
    Genome Biol Evol, 2015 May;7(5):1206-15.
    PMID: 25877615 DOI: 10.1093/gbe/evv065
    Indigenous populations of Malaysia known as Orang Asli (OA) show huge morphological, anthropological, and linguistic diversity. However, the genetic history of these populations remained obscure. We performed a high-density array genotyping using over 2 million single nucleotide polymorphisms in three major groups of Negrito, Senoi, and Proto-Malay. Structural analyses indicated that although all OA groups are genetically closest to East Asian (EA) populations, they are substantially distinct. We identified a genetic affinity between Andamanese and Malaysian Negritos which may suggest an ancient link between these two groups. We also showed that Senoi and Proto-Malay may be admixtures between Negrito and EA populations. Formal admixture tests provided evidence of gene flow between Austro-Asiatic-speaking OAs and populations from Southeast Asia (SEA) and South China which suggest a widespread presence of these people in SEA before Austronesian expansion. Elevated linkage disequilibrium (LD) and enriched homozygosity found in OAs reflect isolation and bottlenecks experienced. Estimates based on Ne and LD indicated that these populations diverged from East Asians during the late Pleistocene (14.5 to 8 KYA). The continuum in divergence time from Negritos to Senoi and Proto-Malay in combination with ancestral markers provides evidences of multiple waves of migration into SEA starting with the first Out-of-Africa dispersals followed by Early Train and subsequent Austronesian expansions.
  17. Kong KF, Yeap SS, Chow SK, Phipps ME
    Autoimmunity, 2002 Jul;35(4):235-9.
    PMID: 12482190
    Worldwide population studies have generally agreed that rheumatoid arthritis (RA) is associated with a group of HLA-DRB1 alleles which share a common amino acid sequence at residues 70-74. This represents the first study to investigate the association of HLA-DRB1 genes with susceptibility to RA amongst Malay, Chinese and Indian ethnic groups in Malaysia. One hundred and thirty three RA patients and one hundred and sixty seven healthy controls were recruited. The HLA-DRB1 alleles were studied using the Phototyping method. The subtypes of HLA-DR4 were detected by "high resolution" PCR-SSP DRB1*04 typing techniques. The prevalence of HLA-DRB1*0405 was significantly higher in Malay patients with RA than in healthy controls (28.9 vs. 8.3%, p = 0.0016, OR = 4.48, 95% CI = 1.26-16.69). Similarly, DRB1*0405 was more common in Chinese RA patients than in controls (30.0 vs. 6.7%, p = 0.0029, OR = 6.00, 95% CI = 1.67-23.48). In addition, DRB1*0901 was a predisposing factor (32.0 vs. 6.7%,p = 0.0015, OR = 6.59, 95% CI = 1.85-25.64) and *0301/04 had a protective role (4.0vs. 25.0%, p = 0.00562, OR = 0.13, 95% CI = 0.02-0.62) in Malaysian Chinese RA. RA in Indians was associated with DRB1*1001 (51.1 vs. 8.5%,p = 0.00002, OR = 11.24, 95% CI = 3.13-44.18). DRB1*0701 (13.3 vs. 42.6%,p = 0.0022, OR = 2.73, 95% CI = 1.40-5.37) may have a protective effect. Therefore, in the Malaysian population, RA is primarily associated with the QRRAA motif, and we suggest that genetic factors play a crucial role in the pathogenesis of RA, compared to environmental factors.
  18. Choy MK, Phipps ME
    J. Mol. Evol., 2003 Jul;57(1):38-43.
    PMID: 12962304
    Phylogenetic relationships among 23 nonhuman primate (NHP) major histocompatibility complex class I chain-related gene (MIC) sequences, 54 confirmed human MICA alleles, and 16 human MICE alleles were constructed with methods of sequence analysis. Topology of the phylogenetic tree showed separation between NHP MICs and human MICs. For human MICs, the topology indicated monophyly for the MICB alleles, while MICA alleles were separated into two lineages, LI and LII. Of these, LI MICA alleles shared a common ancestry with gorilla (Ggo) MIC. One conservative amino acid difference and two nonconservative amino acid differences in the alpha3 domain were found between the MICA lineages. The nonconservative amino acid differences might imply structural and functional differences. Transmembrane (TM) trinucleotide-repeat variants were found to be specific to the MICA lineages such as A4, A9, and A10 to LI and A5 to LII. Variants such as A5.1 and A6 were commonly found in both MICA lineages. Based on these analyses, we postulate a polyphyletic origin for MICA alleles and their division into two lineages, LI and LII. As such, there would be 30 alleles in LI and 24 alleles in LII, thereby reducing the current level of polymorphism that exists, based on a presumed monophyletic origin. The lower degree of polymorphism in MICA would then be in line with the rest of the human major histocompatibility complex nonclassical class I genes.
  19. Aghakhanian F, Wong C, Tan JSY, Yeo LF, Ramadas A, Edo J, et al.
    Public Health, 2019 Nov;176:106-113.
    PMID: 30509859 DOI: 10.1016/j.puhe.2018.10.001
    OBJECTIVES: This study was undertaken to investigate the occurrence of metabolic syndrome (MetS) and cardiovascular disease (CVD) risk in Orang Asli (OA), the indigenous people of Peninsular Malaysia. OA consist of Negrito, Proto-Malay, and Senoi groups who collectively comprise only 0.76% of the population of Peninsular Malaysia. Owing to the challenges in accessing their remote villages, these groups are often excluded in larger government health surveys. Although tropical diseases were scourges in the past, with rapid national development, many OA communities have been gradually urbanized. We believe an epidemiological transition is occurring and non-communicable diseases are on the rise.

    STUDY DESIGN: A retrospective cross-sectional study.

    METHODS: Indigenous Malaysians (n = 629) from three major groups (Negrito, Proto-Malay, and Senoi) were recruited, after ethics approval and informed consent. Body mass index (BMI), body weight, height, waist circumference, and systolic and diastolic blood pressure were measured, and participants were examined for acanthosis nigricans. Venous blood samples were used for measurements of fasting blood sugar, triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). Insulin resistance was estimated using a surrogate measurement TG/HDL-C. The ratios of TC to HDL-C, and of LDL-C to HDL-C were determined. MetS was accessed according to the Joint Interim Statement of the IDF Tsak Force on Epidemiology and Prevention.

    RESULTS: MetS affected 29.57% of the OA population investigated and was significantly more prevalent (P 

  20. Yeo LF, Aghakhanian FF, Tan JSY, Gan HM, Phipps ME
    F1000Res, 2019;8:175.
    PMID: 31275564 DOI: 10.12688/f1000research.17706.3
    Background: The indigenous people of Peninsular Malaysia, also known as Orang Asli, have gradually been urbanized. A shift towards non-communicable diseases commonly associated with sedentary lifestyles have been reported in many tribes. This study engaged with a semi-urbanized Temiar tribe from Kampong Pos Piah, Perak, who are experiencing an epidemiological transition. Methods:  Weight, height, waist circumference, blood pressure, HbA1C and lipid levels were measured as indicators of cardio-metabolic health. DNA was extracted from saliva using salting-out method followed by PCR amplification of the V3-V4 region of the 16S rRNA gene and sequencing on Illumina MiSeq. Microbiome analysis was conducted on Qiime v1.9. Statistical analysis was conducted using Qiime v1.9 and R.   Results: The study revealed that 60.4% of the Temiar community were overweight/obese, with a higher prevalence among women. HbA1C levels showed that 45% of Temiar had pre-diabetes. Insulin resistance was identified in 21% of Temiar by using a surrogate marker, TG/HDL. In total, 56.5% of Temiar were pre-hypertensive, and the condition was prevalent across all age-groups. The saliva microbiome profiles of Temiar revealed significant differences by gender, BMI, abdominal obesity as well as smoking status. The relative abundance of the genus Bifidobacterium was increased in men whereas the genera  Prevotella, Capnocytophaga, Leptotrichia, Neisseria and Streptococcus were increased in women. Proteobacteria was significantly depleted in smokers. Conclusions: Temiar from Pos Piah had a high prevalence of cardio-metabolic risks, including general and abdominal obesity, pre-diabetes, prehypertension and hypertension. This phenomenon has not been previously reported in this tribe. The saliva microbiome profiles were significantly different for individuals of different gender, BMI, abdominal obesity and smoking status.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links