Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Mohammadi-Raigani Z, Gholami H, Mohamadifar A, Samani AN, Pradhan B
    PMID: 38656723 DOI: 10.1007/s11356-024-33290-1
    The prediction of suspended sediment load (SSL) within riverine systems is critical to understanding the watershed's hydrology. Therefore, the novelty of our research is developing an interpretable (explainable) model based on deep learning (DL) and Shapley Additive ExPlanations (SHAP) interpretation technique for prediction of SSL in the riverine systems. This paper investigates the abilities of four DL models, including dense deep neural networks (DDNN), long short-term memory (LSTM), gated recurrent unit (GRU), and simple recurrent neural network (RNN) models for the prediction of daily SSL using river discharge and rainfall data at a daily time scale in the Taleghan River watershed, northwestern Tehran, Iran. The performance of models was evaluated by using several quantitative and graphical criteria. The effect of parameter settings on the performance of deep models on SSL prediction was also investigated. The optimal optimization algorithms, maximum iteration (MI), and batch size (BC) were obtained for modeling daily SSL, and structure of the model impact on prediction remarkably. The comparison of prediction accuracy of the models illustrated that DDNN (with R2 = 0.96, RMSE = 333.46) outperformed LSTM (R2 = 0.75, RMSE = 786.20), GRU (R2 = 0.73, RMSE = 825.67), and simple RNN (R2 = 0.78, RMSE = 741.45). Furthermore, the Taylor diagram confirmed that DDNN has the highest performance among other models. Interpretation techniques can address the black-box nature of models, and here, SHAP was applied to develop an interpretable DL model to interpret of DL model's output. The results of SHAP showed that river discharge has the strongest impact on the model's output in estimating SSL. Overall, we conclude that DL models have great potential in watersheds to predict SSL. Therefore, different interpretation techniques as tools to interpret DL model's output (DL model is as black-box model) are recommended in future research.
  2. Singh RB, Patra KC, Pradhan B, Samantra A
    J Environ Manage, 2024 Feb 14;352:120091.
    PMID: 38228048 DOI: 10.1016/j.jenvman.2024.120091
    Water is a vital resource supporting a broad spectrum of ecosystems and human activities. The quality of river water has declined in recent years due to the discharge of hazardous materials and toxins. Deep learning and machine learning have gained significant attention for analysing time-series data. However, these methods often suffer from high complexity and significant forecasting errors, primarily due to non-linear datasets and hyperparameter settings. To address these challenges, we have developed an innovative HDTO-DeepAR approach for predicting water quality indicators. This proposed approach is compared with standalone algorithms, including DeepAR, BiLSTM, GRU and XGBoost, using performance metrics such as MAE, MSE, MAPE, and NSE. The NSE of the hybrid approach ranges between 0.8 to 0.96. Given the value's proximity to 1, the model appears to be efficient. The PICP values (ranging from 95% to 98%) indicate that the model is highly reliable in forecasting water quality indicators. Experimental results reveal a close resemblance between the model's predictions and actual values, providing valuable insights for predicting future trends. The comparative study shows that the suggested model surpasses all existing, well-known models.
  3. Kumar A, Singh UK, Pradhan B
    J Environ Manage, 2024 Feb;351:119943.
    PMID: 38169263 DOI: 10.1016/j.jenvman.2023.119943
    Acid mine drainage (AMD) is recognized as a major environmental challenge in the Western United States, particularly in Colorado, leading to extreme subsurface contamination issue. Given Colorado's arid climate and dependence on groundwater, an accurate assessment of AMD-induced contamination is deemed crucial. While in past, machine learning (ML)-based inversion algorithms were used to reconstruct ground electrical properties (GEP) such as relative dielectric permittivity (RDP) from ground penetrating radar (GPR) data for contamination assessment, their inherent non-linear nature can introduce significant uncertainty and non-uniqueness into the reconstructed models. This is a challenge that traditional ML methods are not explicitly designed to address. In this study, a probabilistic hybrid technique has been introduced that combines the DeepLabv3+ architecture-based deep convolutional neural network (DCNN) with an ensemble prediction-based Monte Carlo (MC) dropout method. Different MC dropout rates (1%, 5%, and 10%) were initially evaluated using 1D and 2D synthetic GPR data for accurate and reliable RDP model prediction. The optimal rate was chosen based on minimal prediction uncertainty and the closest alignment of the mean or median model with the true RDP model. Notably, with the optimal MC dropout rate, prediction accuracy of over 95% for the 1D and 2D cases was achieved. Motivated by these results, the hybrid technique was applied to field GPR data collected over an AMD-impacted wetland near Silverton, Colorado. The field results underscored the hybrid technique's ability to predict an accurate subsurface RDP distribution for estimating the spatial extent of AMD-induced contamination. Notably, this technique not only provides a precise assessment of subsurface contamination but also ensures consistent interpretations of subsurface condition by different environmentalists examining the same GPR data. In conclusion, the hybrid technique presents a promising avenue for future environmental studies in regions affected by AMD or other contaminants that alter the natural distribution of GEP.
  4. Singha C, Swain KC, Pradhan B, Rusia DK, Moghimi A, Ranjgar B
    Heliyon, 2024 Jan 30;10(2):e24308.
    PMID: 38293330 DOI: 10.1016/j.heliyon.2024.e24308
    Assessing groundwater potential for sustainable resource management is critically important. In addressing this concern, this study aims to advance the field by developing an innovative approach for Groundwater potential zone (GWPZ) mapping using advanced techniques, such as FuzzyAHP, FuzzyDEMATEL, and Logistic regression (LR) models. GWPZ was carried out by integrating various primary factors, such as hydrologic, soil permeability, morphometric, terrain distribution, and anthropogenic influences, incorporating twenty-seven individual criteria using multi-criteria decision models along with a hybrid approach for the Subarnarekha River basin, India, in Google earth engine (GEE). The predictive capability of the model was evaluated using a Multi-Collinearity test (VIF <10.0), followed by applying a random forest model, considering the weighted impact of the five primary factors. The hybrid model for GWPZ classification showed that 21.97 % (4256.3 km2) of the area exhibited very high potential, while 11.37 % (2202.1 km2) indicated very low potential for GW in this area. Validation of the groundwater level data from 72 observation wells, performed by the Area under receiver operating characteristic (AUROC) curve technique, yielded values ranging between 75 % and 78 % for different models, underscoring the robust predictability of GWPZ. The hybrid and LR-FuzzyAHP models demonstrated remarkable effectiveness in GWPZ mapping, indicating that the downstream and southern regions boast substantial groundwater potential attributed to alluvial soil and favorable recharge conditions. Conversely, the central part grapples with a scarcity of groundwater. It holds the potential to assist planners and managers in formulating strategies for managing groundwater levels and alleviating the impacts of future droughts.
  5. Fallahpoor M, Chakraborty S, Pradhan B, Faust O, Barua PD, Chegeni H, et al.
    Comput Methods Programs Biomed, 2024 Jan;243:107880.
    PMID: 37924769 DOI: 10.1016/j.cmpb.2023.107880
    Positron emission tomography/computed tomography (PET/CT) is increasingly used in oncology, neurology, cardiology, and emerging medical fields. The success stems from the cohesive information that hybrid PET/CT imaging offers, surpassing the capabilities of individual modalities when used in isolation for different malignancies. However, manual image interpretation requires extensive disease-specific knowledge, and it is a time-consuming aspect of physicians' daily routines. Deep learning algorithms, akin to a practitioner during training, extract knowledge from images to facilitate the diagnosis process by detecting symptoms and enhancing images. This acquired knowledge aids in supporting the diagnosis process through symptom detection and image enhancement. The available review papers on PET/CT imaging have a drawback as they either included additional modalities or examined various types of AI applications. However, there has been a lack of comprehensive investigation specifically focused on the highly specific use of AI, and deep learning, on PET/CT images. This review aims to fill that gap by investigating the characteristics of approaches used in papers that employed deep learning for PET/CT imaging. Within the review, we identified 99 studies published between 2017 and 2022 that applied deep learning to PET/CT images. We also identified the best pre-processing algorithms and the most effective deep learning models reported for PET/CT while highlighting the current limitations. Our review underscores the potential of deep learning (DL) in PET/CT imaging, with successful applications in lesion detection, tumor segmentation, and disease classification in both sinogram and image spaces. Common and specific pre-processing techniques are also discussed. DL algorithms excel at extracting meaningful features, and enhancing accuracy and efficiency in diagnosis. However, limitations arise from the scarcity of annotated datasets and challenges in explainability and uncertainty. Recent DL models, such as attention-based models, generative models, multi-modal models, graph convolutional networks, and transformers, are promising for improving PET/CT studies. Additionally, radiomics has garnered attention for tumor classification and predicting patient outcomes. Ongoing research is crucial to explore new applications and improve the accuracy of DL models in this rapidly evolving field.
  6. Gholami H, Mohammadifar A, Golzari S, Song Y, Pradhan B
    Sci Total Environ, 2023 Dec 15;904:166960.
    PMID: 37696396 DOI: 10.1016/j.scitotenv.2023.166960
    Gully erosion possess a serious hazard to critical resources such as soil, water, and vegetation cover within watersheds. Therefore, spatial maps of gully erosion hazards can be instrumental in mitigating its negative consequences. Among the various methods used to explore and map gully erosion, advanced learning techniques, especially deep learning (DL) models, are highly capable of spatial mapping and can provide accurate predictions for generating spatial maps of gully erosion at different scales (e.g., local, regional, continental, and global). In this paper, we applied two DL models, namely a simple recurrent neural network (RNN) and a gated recurrent unit (GRU), to map land susceptibility to gully erosion in the Shamil-Minab plain, Hormozgan province, southern Iran. To address the inherent black box nature of DL models, we applied three novel interpretability methods consisting of SHaply Additive explanation (SHAP), ceteris paribus and partial dependence (CP-PD) profiles and permutation feature importance (PFI). Using the Boruta algorithm, we identified seven important features that control gully erosion: soil bulk density, clay content, elevation, land use type, vegetation cover, sand content, and silt content. These features, along with an inventory map of gully erosion (based on a 70 % training dataset and 30 % test dataset), were used to generate spatial maps of gully erosion using DL models. According to the Kolmogorov-Smirnov (KS) statistic performance assessment measure, the simple RNN model (with KS = 91.6) outperformed the GRU model (with KS = 66.6). Based on the results from the simple RNN model, 7.4 %, 14.5 %, 18.9 %, 31.2 % and 28 % of total area of the plain were classified as very-low, low, moderate, high and very-high hazard classes, respectively. According to SHAP plots, CP-PD profiles, and PFI measures, soil silt content, vegetation cover (NDVI) and land use type had the highest impact on the model's output. Overall, the DL modelling techniques and interpretation methods used in this study proved to be helpful in generating spatial maps of soil erosion hazard, especially gully erosion. Their interpretability can support watershed sustainable management.
  7. Khan MJ, Singh PP, Pradhan B, Alamri A, Lee CW
    Sensors (Basel), 2023 Oct 28;23(21).
    PMID: 37960482 DOI: 10.3390/s23218783
    Road network extraction is a significant challenge in remote sensing (RS). Automated techniques for interpreting RS imagery offer a cost-effective solution for obtaining road network data quickly, surpassing traditional visual interpretation methods. However, the diverse characteristics of road networks, such as varying lengths, widths, materials, and geometries across different regions, pose a formidable obstacle for road extraction from RS imagery. The issue of road extraction can be defined as a task that involves capturing contextual and complex elements while also preserving boundary information and producing high-resolution road segmentation maps for RS data. The objective of the proposed Archimedes tuning process quantum dilated convolutional neural network for road Extraction (ATP-QDCNNRE) technology is to tackle the aforementioned issues by enhancing the efficacy of image segmentation outcomes that exploit remote sensing imagery, coupled with Archimedes optimization algorithm methods (AOA). The findings of this study demonstrate the enhanced road-extraction capabilities achieved by the ATP-QDCNNRE method when used with remote sensing imagery. The ATP-QDCNNRE method employs DL and a hyperparameter tuning process to generate high-resolution road segmentation maps. The basis of this approach lies in the QDCNN model, which incorporates quantum computing (QC) concepts and dilated convolutions to enhance the network's ability to capture both local and global contextual information. Dilated convolutions also enhance the receptive field while maintaining spatial resolution, allowing fine road features to be extracted. ATP-based hyperparameter modifications improve QDCNNRE road extraction. To evaluate the effectiveness of the ATP-QDCNNRE system, benchmark databases are used to assess its simulation results. The experimental results show that ATP-QDCNNRE performed with an intersection over union (IoU) of 75.28%, mean intersection over union (MIoU) of 95.19%, F1 of 90.85%, precision of 87.54%, and recall of 94.41% in the Massachusetts road dataset. These findings demonstrate the superior efficiency of this technique compared to more recent methods.
  8. Horry MJ, Chakraborty S, Pradhan B, Paul M, Zhu J, Loh HW, et al.
    Sensors (Basel), 2023 Jul 21;23(14).
    PMID: 37514877 DOI: 10.3390/s23146585
    Screening programs for early lung cancer diagnosis are uncommon, primarily due to the challenge of reaching at-risk patients located in rural areas far from medical facilities. To overcome this obstacle, a comprehensive approach is needed that combines mobility, low cost, speed, accuracy, and privacy. One potential solution lies in combining the chest X-ray imaging mode with federated deep learning, ensuring that no single data source can bias the model adversely. This study presents a pre-processing pipeline designed to debias chest X-ray images, thereby enhancing internal classification and external generalization. The pipeline employs a pruning mechanism to train a deep learning model for nodule detection, utilizing the most informative images from a publicly available lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image brightness and contrast. Model training is then performed using combinations of lung field segmentation, close cropping, and rib/bone suppression. The resulting deep learning models, generated through this pre-processing pipeline, demonstrate successful generalization on an independent lung nodule dataset. By eliminating confounding variables in chest X-ray images and suppressing signal noise from the bone structures, the proposed deep learning lung nodule detection algorithm achieves an external generalization accuracy of 89%. This approach paves the way for the development of a low-cost and accessible deep learning-based clinical system for lung cancer screening.
  9. Chakrabortty R, Pal SC, Ghosh M, Arabameri A, Saha A, Roy P, et al.
    Soft comput, 2023 May 29.
    PMID: 37362259 DOI: 10.1007/s00500-023-08596-w
    [This retracts the article DOI: 10.1007/s00500-021-06012-9.].
  10. Abdollahi A, Pradhan B
    Sci Total Environ, 2023 Mar 24;879:163004.
    PMID: 36965733 DOI: 10.1016/j.scitotenv.2023.163004
    One of the worst environmental catastrophes that endanger the Australian community is wildfire. To lessen potential fire threats, it is helpful to recognize fire occurrence patterns and identify fire susceptibility in wildfire-prone regions. The use of machine learning (ML) algorithms is acknowledged as one of the most well-known methods for addressing non-linear issues like wildfire hazards. It has always been difficult to analyze these multivariate environmental disasters because modeling can be influenced by a variety of sources of uncertainty, including the quantity and quality of training procedures and input variables. Moreover, although ML techniques show promise in this field, they are unstable for a number of reasons, including the usage of irrelevant descriptor characteristics when developing the models. Explainable AI (XAI) can assist us in acquiring insights into these constraints and, consequently, modifying the modeling approach and training data necessary. In this research, we describe how a Shapley additive explanations (SHAP) model can be utilized to interpret the results of a deep learning (DL) model that is developed for wildfire susceptibility prediction. Different contributing factors such as topographical, landcover/vegetation, and meteorological factors are fed into the model and various SHAP plots are used to identify which parameters are impacting the prediction model, their relative importance, and the reasoning behind specific decisions. The findings drawn from SHAP plots show the significant contributions made by factors such as humidity, wind speed, rainfall, elevation, slope, and normalized difference moisture index (NDMI) to the suggested model's output for wildfire susceptibility mapping. We infer that developing an explainable model would aid in comprehending the model's decision to map wildfire susceptibility, pinpoint high-contributing components in the prediction model, and consequently control fire hazards effectively.
  11. Sakti AD, Anggraini TS, Ihsan KTN, Misra P, Trang NTQ, Pradhan B, et al.
    Sci Total Environ, 2023 Jan 01;854:158825.
    PMID: 36116660 DOI: 10.1016/j.scitotenv.2022.158825
    Air pollution has massive impacts on human life and poor air quality results in three million deaths annually. Air pollution can result from natural causes, including volcanic eruptions and extreme droughts, or human activities, including motor vehicle emissions, industry, and the burning of farmland and forests. Emission sources emit multiple pollutant types with diverse characteristics and impacts. However, there has been little research on the risk of multiple air pollutants; thus, it is difficult to identify multi-pollutant mitigation processes, particularly in Southeast Asia, where air pollution moves dynamically across national borders. In this study, the main objective was to develop a multi-air pollution risk index product for CO, NO2, and SO2 based on Sentinel-5P remote sensing data from 2019 to 2020. The risk index was developed by integrating hazard, vulnerability, and exposure analyses. Hazard analysis considers air pollution data from remote sensing, vulnerability analysis considers the air pollution sources, and exposure analysis considers the population density. The novelty of this study lies in its development of a multi-risk model that considers the weights obtained from the relationship between the hazard and vulnerability parameters. The highest air pollution risk index values were observed in urban areas, with a high exposure index that originates from pollution caused by human activity. Multi-risk analysis of the three air pollutants revealed that Singapore, Vietnam, and the Philippines had the largest percentages of high-risk areas, while Indonesia had the largest total high-risk area (4361 km2). Using the findings of this study, the patterns and characteristics of the risk distribution of multiple air pollutants in Southeast Asia can be identified, which can be used to mitigate multi-pollutant sources, particularly with respect to supporting the clean air targets in the Sustainable Development Goals.
  12. Chakrabortty R, Pal SC, Ghosh M, Arabameri A, Saha A, Roy P, et al.
    Soft comput, 2023;27(6):3367-3388.
    PMID: 34276248 DOI: 10.1007/s00500-021-06012-9
    The COVID-19 pandemic enforced nationwide lockdown, which has restricted human activities from March 24 to May 3, 2020, resulted in an improved air quality across India. The present research investigates the connection between COVID-19 pandemic-imposed lockdown and its relation to the present air quality in India; besides, relationship between climate variables and daily new affected cases of Coronavirus and mortality in India during the this period has also been examined. The selected seven air quality pollutant parameters (PM10, PM2.5, CO, NO2, SO2, NH3, and O3) at 223 monitoring stations and temperature recorded in New Delhi were used to investigate the spatial pattern of air quality throughout the lockdown. The results showed that the air quality has improved across the country and average temperature and maximum temperature were connected to the outbreak of the COVID-19 pandemic. This outcomes indicates that there is no such relation between climatic parameters and outbreak and its associated mortality. This study will assist the policy maker, researcher, urban planner, and health expert to make suitable strategies against the spreading of COVID-19 in India and abroad.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00500-021-06012-9.

  13. Kolekar S, Gite S, Pradhan B, Alamri A
    Sensors (Basel), 2022 Dec 10;22(24).
    PMID: 36560047 DOI: 10.3390/s22249677
    The intelligent transportation system, especially autonomous vehicles, has seen a lot of interest among researchers owing to the tremendous work in modern artificial intelligence (AI) techniques, especially deep neural learning. As a result of increased road accidents over the last few decades, significant industries are moving to design and develop autonomous vehicles. Understanding the surrounding environment is essential for understanding the behavior of nearby vehicles to enable the safe navigation of autonomous vehicles in crowded traffic environments. Several datasets are available for autonomous vehicles focusing only on structured driving environments. To develop an intelligent vehicle that drives in real-world traffic environments, which are unstructured by nature, there should be an availability of a dataset for an autonomous vehicle that focuses on unstructured traffic environments. Indian Driving Lite dataset (IDD-Lite), focused on an unstructured driving environment, was released as an online competition in NCPPRIPG 2019. This study proposed an explainable inception-based U-Net model with Grad-CAM visualization for semantic segmentation that combines an inception-based module as an encoder for automatic extraction of features and passes to a decoder for the reconstruction of the segmentation feature map. The black-box nature of deep neural networks failed to build trust within consumers. Grad-CAM is used to interpret the deep-learning-based inception U-Net model to increase consumer trust. The proposed inception U-net with Grad-CAM model achieves 0.622 intersection over union (IoU) on the Indian Driving Dataset (IDD-Lite), outperforming the state-of-the-art (SOTA) deep neural-network-based segmentation models.
  14. Fallahpoor M, Chakraborty S, Heshejin MT, Chegeni H, Horry MJ, Pradhan B
    Comput Biol Med, 2022 Jun;145:105464.
    PMID: 35390746 DOI: 10.1016/j.compbiomed.2022.105464
    BACKGROUND: Artificial intelligence technologies in classification/detection of COVID-19 positive cases suffer from generalizability. Moreover, accessing and preparing another large dataset is not always feasible and time-consuming. Several studies have combined smaller COVID-19 CT datasets into "supersets" to maximize the number of training samples. This study aims to assess generalizability by splitting datasets into different portions based on 3D CT images using deep learning.

    METHOD: Two large datasets, including 1110 3D CT images, were split into five segments of 20% each. Each dataset's first 20% segment was separated as a holdout test set. 3D-CNN training was performed with the remaining 80% from each dataset. Two small external datasets were also used to independently evaluate the trained models.

    RESULTS: The total combination of 80% of each dataset has an accuracy of 91% on Iranmehr and 83% on Moscow holdout test datasets. Results indicated that 80% of the primary datasets are adequate for fully training a model. The additional fine-tuning using 40% of a secondary dataset helps the model generalize to a third, unseen dataset. The highest accuracy achieved through transfer learning was 85% on LDCT dataset and 83% on Iranmehr holdout test sets when retrained on 80% of Iranmehr dataset.

    CONCLUSION: While the total combination of both datasets produced the best results, different combinations and transfer learning still produced generalizable results. Adopting the proposed methodology may help to obtain satisfactory results in the case of limited external datasets.

  15. Shanableh A, Al-Ruzouq R, Hamad K, Gibril MBA, Khalil MA, Khalifa I, et al.
    Remote Sens Appl, 2022 Apr;26:100757.
    PMID: 36281297 DOI: 10.1016/j.rsase.2022.100757
    The stringent COVID-19 lockdown measures in 2020 significantly impacted people's mobility and air quality worldwide. This study presents an assessment of the impacts of the lockdown and the subsequent reopening on air quality and people's mobility in the United Arab Emirates (UAE). Google's community mobility reports and UAE's government lockdown measures were used to assess the changes in the mobility patterns. Time-series and statistical analyses of various air pollutants levels (NO2, O3, SO2, PM10, and aerosol optical depth-AOD) obtained from satellite images and ground monitoring stations were used to assess air quality. The levels of pollutants during the initial lockdown (March to June 2020) and the subsequent gradual reopening in 2020 and 2021 were compared with their average levels during 2015-2019. During the lockdown, people's mobility in the workplace, parks, shops and pharmacies, transit stations, and retail and recreation sectors decreased by about 34%-79%. However, the mobility in the residential sector increased by up to 29%. The satellite-based data indicated significant reductions in NO2 (up to 22%), SO2 (up to 17%), and AOD (up to 40%) with small changes in O3 (up to 5%) during the lockdown. Similarly, data from the ground monitoring stations showed significant reductions in NO2 (49% - 57%) and PM10 (19% - 64%); however, the SO2 and O3 levels showed inconsistent trends. The ground and satellite-based air quality levels were positively correlated for NO2, PM10, and AOD. The data also demonstrated significant correlations between the mobility and NO2 and AOD levels during the lockdown and recovery periods. The study documents the impacts of the lockdown on people's mobility and air quality and provides useful data and analyses for researchers, planners, and policymakers relevant to managing risk, mobility, and air quality.
  16. Senanayake S, Pradhan B
    J Environ Manage, 2022 Feb 02;308:114589.
    PMID: 35121456 DOI: 10.1016/j.jenvman.2022.114589
    Soil erosion hazard is one of the prominent climate hazards that negatively impact countries' economies and livelihood. According to the global climate index, Sri Lanka is ranked among the first ten countries most threatened by climate change during the last three years (2018-2020). However, limited studies were conducted to simulate the impact of the soil erosion vulnerability based on climate scenarios. This study aims to assess and predict soil erosion susceptibility using climate change projected scenarios: Representative Concentration Pathways (RCP) in the Central Highlands of Sri Lanka. The potential of soil erosion susceptibility was predicted to 2040, depending on climate change scenarios, RCP 2.6 and RCP 8.5. Five models: revised universal soil loss (RUSLE), frequency ratio (FR), artificial neural networks (ANN), support vector machine (SVM) and adaptive network-based fuzzy inference system (ANFIS) were selected as widely applied for hazards assessments. Eight geo-environmental factors were selected as inputs to model the soil erosion susceptibility. Results of the five models demonstrate that soil erosion vulnerability (soil erosion rates) will increase 4%-22% compared to the current soil erosion rate (2020). The predictions indicate average soil erosion will increase to 10.50 t/ha/yr and 12.4 t/ha/yr under the RCP 2.6 and RCP 8.5 climate scenario in 2040, respectively. The ANFIS and SVM model predictions showed the highest accuracy (89%) on soil erosion susceptibility for this study area. The soil erosion susceptibility maps provide a good understanding of future soil erosion vulnerability (spatial distribution) and can be utilized to develop climate resilience.
  17. Singh SK, Taylor RW, Pradhan B, Shirzadi A, Pham BT
    Ecotoxicol Environ Saf, 2022 Feb 01;232:113271.
    PMID: 35121252 DOI: 10.1016/j.ecoenv.2022.113271
    This study evaluates state-of-the-art machine learning models in predicting the most sustainable arsenic mitigation preference. A Gaussian distribution-based Naïve Bayes (NB) classifier scored the highest Area Under the Curve (AUC) of the Receiver Operating Characteristic curve (0.82), followed by Nu Support Vector Classification (0.80), and K-Neighbors (0.79). Ensemble classifiers scored higher than 70% AUC, with Random Forest being the top performer (0.77), and Decision Tree model ranked fourth with an AUC of 0.77. The multilayer perceptron model also achieved high performance (AUC=0.75). Most linear classifiers underperformed, with the Ridge classifier at the top (AUC=0.73) and perceptron at the bottom (AUC=0.57). A Bernoulli distribution-based Naïve Bayes classifier was the poorest model (AUC=0.50). The Gaussian NB was also the most robust ML model with the slightest variation of Kappa score on training (0.58) and test data (0.64). The results suggest that nonlinear or ensemble classifiers could more accurately understand the complex relationships of socio-environmental data and help develop accurate and robust prediction models of sustainable arsenic mitigation. Furthermore, Gaussian NB is the best option when data is scarce.
  18. Senanayake S, Pradhan B, Huete A, Brennan J
    Sci Total Environ, 2022 Feb 01;806(Pt 2):150405.
    PMID: 34582866 DOI: 10.1016/j.scitotenv.2021.150405
    The spatial variation of soil erosion is essential for farming system management and resilience development, specifically in the high climate hazard vulnerable tropical countries like Sri Lanka. This study aimed to investigate climate and human-induced soil erosion through spatial modeling. Remote sensing was used for spatial modeling to detect soil erosion, crop diversity, and rainfall variation. The study employed a time-series analysis of several variables such as rainfall, land-use land-cover (LULC) and crop diversity to detect the spatial variability of soil erosion in farming systems. Rain-use efficiency (RUE) and residual trend analysis (RESTREND) combined with a regression approach were applied to partition the soil erosion due to human and climate-induced land degradation. Results showed that soil erosion has increased from 9.08 Mg/ha/yr to 11.08 Mg/ha/yr from 2000 to 2019 in the Central Highlands of Sri Lanka. The average annual rainfall has increased in the western part of the Central Highlands, and soil erosion hazards such as landslides incidence also increased during this period. However, crop diversity has been decreasing in farming systems, namely wet zone low country (WL1a) and wet zone mid-country (WM1a), in the western part of the Central Highlands. The RUE and RESTREND analyses reveal climate-induced soil erosion is responsible for land degradation in these farming systems and is a threat to sustainable food production in the farming systems of the Central Highlands.
  19. Roslidar R, Syaryadhi M, Saddami K, Pradhan B, Arnia F, Syukri M, et al.
    Math Biosci Eng, 2022 Jan;19(2):1304-1331.
    PMID: 35135205 DOI: 10.3934/mbe.2022060
    The presence of a well-trained, mobile CNN model with a high accuracy rate is imperative to build a mobile-based early breast cancer detector. In this study, we propose a mobile neural network model breast cancer mobile network (BreaCNet) and its implementation framework. BreaCNet consists of an effective segmentation algorithm for breast thermograms and a classifier based on the mobile CNN model. The segmentation algorithm employing edge detection and second-order polynomial curve fitting techniques can effectively capture the thermograms' region of interest (ROI), thereby facilitating efficient feature extraction. The classifier was developed based on ShuffleNet by adding one block consisting of a convolutional layer with 1028 filters. The modified Shufflenet demonstrated a good fit learning with 6.1 million parameters and 22 MB size. Simulation results showed that modified ShuffleNet alone resulted in a 72% accuracy rate, but the performance excelled to a 100% accuracy rate when integrated with the proposed segmentation algorithm. In terms of diagnostic accuracy of the normal and abnormal test, BreaCNet significantly improves the sensitivity rate from 43% to 100% and specificity of 100%. We confirmed that feeding only the ROI of the input dataset to the network can improve the classifier's performance. On the implementation aspect of BreaCNet, the on-device inference is recommended to ensure users' data privacy and handle an unreliable network connection.
  20. Deshpande NM, Gite S, Pradhan B, Kotecha K, Alamri A
    Math Biosci Eng, 2022 Jan;19(2):1970-2001.
    PMID: 35135238 DOI: 10.3934/mbe.2022093
    The diagnosis of leukemia involves the detection of the abnormal characteristics of blood cells by a trained pathologist. Currently, this is done manually by observing the morphological characteristics of white blood cells in the microscopic images. Though there are some equipment- based and chemical-based tests available, the use and adaptation of the automated computer vision-based system is still an issue. There are certain software frameworks available in the literature; however, they are still not being adopted commercially. So there is a need for an automated and software- based framework for the detection of leukemia. In software-based detection, segmentation is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization (LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. A comparative analysis of the proposed methodology is done with existing benchmarks methods. The proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR and Similarity index. The result shows a significant improvement in the performance measures with optimizing threshold algorithms and the LebTLBO technique.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links