This study attempts to identify the optimum social marketing mix for marketing energy conservation behaviour to students in Malaysian universities. A total of 2000 students from 5 major Malaysian universities were invited to provide their preferred social marketing mix. A choice-based conjoint analysis identified a mix of five social marketing attributes to promote energy conservation behaviour; the mix is comprised of the attributes of Product, Price, Place, Promotion, and Post-purchase Maintenance. Each attribute of the mix is associated with a list of strategies. The Product and Post-purchase Maintenance attributes were identified by students as the highest priority attributes in the social marketing mix for energy conservation behaviour marketing, with shares of 27.12% and 27.02%, respectively. The least preferred attribute in the mix is Promotion, with a share of 11.59%. This study proposes an optimal social marketing mix to university management when making decisions about marketing energy conservation behaviour to students, who are the primary energy consumers in the campus. Additionally, this study will assist university management to efficiently allocate scarce resources in fulfilling its social responsibility and to overcome marketing shortcomings by selecting the right marketing mix.
Matched MeSH terms: Conservation of Natural Resources/methods*
Effective waste management remains a challenge in global environmental sustainability, underlining the urgent necessity for innovative solutions. This review explored waste management strategies, focusing on the role of P-graph frameworks in achieving sustainable development goals (SDGs). P-graphs offer a systematic approach across domains including, chemical reaction routes, carbon management networks, economic systems and resource planning to waste management synthesis and planning. Through a systematic search and analysis of relevant P-graph approaches, 28 articles meeting the inclusion criteria were selected for review. The study reveals that P-graph approach is a systematic methodology that can streamline decision-making processes, which ultimately lead to more efficient and effective waste management strategies and solutions. This research also highlighted the absence of previous studies on the application of the P-graph approach to various types of waste, underscoring its significance and originality in the field. This study seeks to advance the achievement of SDGs and promote sustainable waste management practices through the integration of the P-graph framework with waste management solutions.
Matched MeSH terms: Conservation of Natural Resources/methods
Wave energy and storm surges threaten coastal ecology and nearshore infrastructures. Although coastal structures are conventionally constructed to dampen the wave energy, they introduce tremendous damage to the ecology of the coast. To minimize environmental impact, ecofriendly coastal protection schemes should be introduced. In this paper, we discuss an example of an innovative mangrove rehabilitation attempt to restore the endangered mangroves on Carey Island, Malaysia. A submerged detached breakwater system was constructed to dampen the energy of wave and trap the sediments behind the structure. Further, a large number of mangrove seedlings were planted using different techniques. Further, we assess the possibility of success for a future mangrove rehabilitation project at the site in the context of sedimentology, bathymetry, and hydrogeochemistry. The assessment showed an increase in the amount of silt and clay, and the seabed was noticeably elevated. The nutrient concentration, the pH value, and the salinity index demonstrate that the site is conducive in establishing mangrove seedlings. As a result, we conclude that the site is now ready for attempts to rehabilitate the lost mangrove forest.
Matched MeSH terms: Conservation of Natural Resources/methods*
A century ago, tigers (Panthera tigris Linnaeus, 1758) were so common in parts of Southeast Asia as to be considered pests, and governments sponsored their killing. Habitat loss and fragmentation, market-driven poaching and loss of prey have since led to the disappearance of Indochinese tigers from most their former range. Despite 15 years of dedicated tiger conservation funding, national estimates of Indochinese tiger subpopulations can at best only be roughly approximated. The future for the subspecies appears grim unless very focused efforts can be applied to stabilize and recover subpopulations. On a regional scale, the 2 proposed subspecies Panthera tigris corbetti and P. tigris jacksoni are effectively managed as separate conservation units. Evaluating where to place conservation efforts should consider the vulnerability (likelihood of extinction) and irreplaceability (likelihood that an area contributes uniquely to regional conservation) of tiger subpopulations. Only 1 site in Thailand supporting <200 individuals (Huai Kha Khaeng-Thung Yai) is considered low vulnerability, and is irreplaceable. Five sites in Lao, Thailand and Peninsular Malaysia are medium vulnerability and irreplaceable. Priorities at these 6 sites are to double tiger numbers within 10 years through protection and monitoring. Seven sites in Lao, Thailand and Myanmar are high vulnerability and irreplaceable, and might be recovered if government commitment to tigers, staff capacity and legal frameworks for tiger protection are established. Tigers are extremely vulnerable or even extinct in Cambodia's Eastern Plains and the site is irreplaceable for tigers because it represents the only large (>10,000 km(2) ) block of dry forest habitat available in the region. A reintroduction program is the only option to recover tigers there.
Matched MeSH terms: Conservation of Natural Resources/methods*
Most developing countries, particularly Indonesia, will be facing problems of sludge pressure in the next decades due to the increase in practices of legal and illegal logging as well as land and water demands. Consequently, they will also be facing the challenges of soil erosion and sludge management due to increased quantities of sludge coming from several potential sources, such as activated sludge, chemical sludge, fecal sludge and solid wastes as well as erosion and sedimentation. Although the government of Indonesia has enacted laws and policies to speed up the implementation of the programs and activities related to sludge management, the detailed practice concepts in implementing the programs need to be identified. Discussion of role-sharing amongst the related government agencies, private institutions and other stakeholders is urgent for clarifying the participation of each party in the next years to come. This paper proposes a management approach and level of responsibilities in sludge management. Implementation of zero DeltaQ, zero DeltaS and zero DeltaP policies needs to be adopted by local and central governments. Application of sludge on the agricultural lands and other uses will promote sustainable development.
Matched MeSH terms: Conservation of Natural Resources/methods*
The Heart of Borneo initiative has promoted the integration of protected areas and sustainably-managed forests across Malaysia, Indonesia, and Brunei. Recently, however, member states of the Heart of Borneo have begun pursuing ambitious unilateral infrastructure-development schemes to accelerate economic growth, jeopardizing the underlying goal of trans-boundary integrated conservation. Focusing on Sabah, Malaysia, we highlight conflicts between its Pan-Borneo Highway scheme and the regional integration of protected areas, unprotected intact forests, and conservation-priority forests. Road developments in southern Sabah in particular would drastically reduce protected-area integration across the northern Heart of Borneo region. Such developments would separate two major clusters of protected areas that account for one-quarter of all protected areas within the Heart of Borneo complex. Sabah has proposed forest corridors and highway underpasses as means of retaining ecological connectivity in this context. Connectivity modelling identified numerous overlooked areas for connectivity rehabilitation among intact forest patches following planned road development. While such 'linear-conservation planning' might theoretically retain up to 85% of intact-forest connectivity and integrate half of the conservation-priority forests across Sabah, in reality it is very unlikely to achieve meaningful ecological integration. Moreover, such measure would be exceedingly costly if properly implemented-apparently beyond the operating budget of relevant Malaysian authorities. Unless critical road segments are cancelled, planned infrastructure will fragment important conservation landscapes with little recourse for mitigation. This likelihood reinforces earlier calls for the legal recognition of the Heart of Borneo region for conservation planning as well as for enhanced tri-lateral coordination of both conservation and development.
Matched MeSH terms: Conservation of Natural Resources/methods*
To date, there is no such scale that may precisely measure mores of the customer base for the ecotourism industry. Therefore, a thematic analysis of literature has been conducted by examining various good quality research works on intrinsic characteristics eliciting pro-environmental actions. Based upon the thematic analysis, a new scale of measure has been proposed with the help of 17 scholars and 15 practitioners hailing from different countries by mutually agreed intended meanings and breadth of the theoretical concepts. The new scale has 4 dimensions comprising a pool of 32 items, which has been empirically validated through the data collected from 268 Malaysian tourists. The dimensions are: sense of obligation to care for the natural environment, sense of obligation to practice eco-friendly activities, sense of obligation to purchase eco-friendly products, and sense of obligation to support eco-friendly inventions. The theoretical and managerial implications together with research limitations have been discussed.
Matched MeSH terms: Conservation of Natural Resources/methods*
Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains.
Matched MeSH terms: Conservation of Natural Resources/methods*
With only 5% of the world's wild tigers (Panthera tigris Linnaeus, 1758) remaining since the last century, conservationists urgently need to know whether or not the management strategies currently being employed are effectively protecting these tigers. This knowledge is contingent on the ability to reliably monitor tiger populations, or subsets, over space and time. In the this paper, we focus on the 2 seminal methodologies (camera trap and occupancy surveys) that have enabled the monitoring of tiger populations with greater confidence. Specifically, we: (i) describe their statistical theory and application in the field; (ii) discuss issues associated with their survey designs and state variable modeling; and, (iii) discuss their future directions. These methods have had an unprecedented influence on increasing statistical rigor within tiger surveys and, also, surveys of other carnivore species. Nevertheless, only 2 published camera trap studies have gone beyond single baseline assessments and actually monitored population trends. For low density tiger populations (e.g. <1 adult tiger/100 km(2)) obtaining sufficient precision for state variable estimates from camera trapping remains a challenge because of insufficient detection probabilities and/or sample sizes. Occupancy surveys have overcome this problem by redefining the sampling unit (e.g. grid cells and not individual tigers). Current research is focusing on developing spatially explicit capture-mark-recapture models and estimating abundance indices from landscape-scale occupancy surveys, as well as the use of genetic information for identifying and monitoring tigers. The widespread application of these monitoring methods in the field now enables complementary studies on the impact of the different threats to tiger populations and their response to varying management intervention.
Matched MeSH terms: Conservation of Natural Resources/methods*
Large carnivores have long fascinated human societies and have profound influences on ecosystems. However, their conservation represents one of the greatest challenges of our time, particularly where attacks on humans occur. Where human recreational and/or livelihood activities overlap with large carnivore ranges, conflicts can become particularly serious. Two different scenarios are responsible for such overlap: In some regions of the world, increasing human populations lead to extended encroachment into large carnivore ranges, which are subject to increasing contraction, fragmentation, and degradation. In other regions, human and large carnivore populations are expanding, thus exacerbating conflicts, especially in those areas where these species were extirpated and are now returning. We thus face the problem of learning how to live with species that can pose serious threats to humans. We collected a total of 5,440 large carnivore (Felidae, Canidae, and Ursidae; 12 species) attacks worldwide between 1950 and 2019. The number of reported attacks increased over time, especially in lower-income countries. Most attacks (68%) resulted in human injuries, whereas 32% were fatal. Although attack scenarios varied greatly within and among species, as well as in different areas of the world, factors triggering large carnivore attacks on humans largely depend on the socioeconomic context, with people being at risk mainly during recreational activities in high-income countries and during livelihood activities in low-income countries. The specific combination of local socioeconomic and ecological factors is thus a risky mix triggering large carnivore attacks on humans, whose circumstances and frequencies cannot only be ascribed to the animal species. This also implies that effective measures to reduce large carnivore attacks must also consider the diverse local ecological and social contexts.
Matched MeSH terms: Conservation of Natural Resources/methods
Urbanization is one of the leading causes of urban flooding as rapid development produces more impervious areas in cities. The application of green roofs is regarded as an effective technology to minimize the adverse effects of urban development. The stormwater management capacities of green roofs have been extensively acknowledged, and they can retain rainfall and detain runoff. Nevertheless, Malaysia has experienced few green roof applications, and only limited literature is available concerning such topics. Additionally, the incorporation of waste and recycled material in green roof designs must be considered to ensure such projects benefit the environment as well as the economy. Therefore, the construction of a green roof utilizing recycled waste materials was attempted. An extensive green roof was constructed using beach morning glory and creeping ox-eye plants as vegetation layers, along with coconut waste, i.e., coconut fiber and coconut shell, as the medium for the filter and drainage layer, respectively. According to the results, the use of recycled coconut waste materials in the green roof operations reduced the peak flow by as much as 86%, while the use of commercial materials led to a reduction of 67%.
Matched MeSH terms: Conservation of Natural Resources/methods
In the context of the United Nations Sustainable Development Goals (UN-SDGs), this study accentuates the role of the tourism and hospitality sector in promoting sustainability. The primary purpose is to unravel the relationship between corporate social responsibility (CSR) and energy-specific sustainable behavior of employees (ESBE), with particular emphasis on the mediating roles of green intrinsic motivation and personal environmental norms. Utilizing a three-wave data collection approach, we secured 325 valid responses from sector employees at various levels (manager-non managers) and applied Structural Equation Modeling through the SMART-PLS tool to assess the hypothesized relationships. The findings highlight a pronounced interconnection between CSR, ESBE, and the designated mediating variables. These results not only augment the academic literature by illustrating the psychological underpinnings bridging CSR to ESBE, but also equip the tourism and hospitality industry with actionable insights. Through informed CSR initiatives aligned with employee values, the sector can galvanize sustainable behaviors and create business models that resonate with the aspirations of the UN-SDGs, pointing the way to a more sustainable industry.
Matched MeSH terms: Conservation of Natural Resources/methods
The purpose of this study is to review the relationship between the highly anticipated concept of circular economy (CE) and sustainable development goals (SDGs). These two sustainability principles have transformed organizations and countries in their quest to achieve sustainable development. Despite their importance to the business and corporate realm, the discussion of these two concepts has been developed in silos, arbitrarily connected. Through a bibliometric approach, this study reviewed 226 journal publications and 16,008 cited references from the Web of Science (WoS) to understand the past, present and future trends of the two concepts and their impact on the sustainability development. The bibliometric approach of citation, co-citation and co-word analysis uncovers the relevant and significant themes and research streams. Theoretical and practical implications were discussed within the broader business and governance perspective to develop a substantial triple bottom line in creating a sustainable future for civil society.
Matched MeSH terms: Conservation of Natural Resources/methods
Freshwater scarcity, a problem that has arisen particularly as a result of the progressive environmental damage caused by human consumption patterns, is strongly associated with a loss of living quality and a drop in global socioeconomic development. Wastewater treatment is one of the measures being taken to mitigate the current situation. However, the majority of existing treatments employ chemicals that have harmful environmental consequences and low effectiveness and are prohibitively expensive in most countries. Therefore, to increase water supplies, more advanced and cost-effective water treatment technologies are required to be developed for desalination and water reuse purposes. Green technologies have been highlighted as a long-term strategy for conserving natural resources, reducing negative environmental repercussions, and boosting social and economic growth. Thus, a bibliometric technique was applied in this study to identifying prominent green technologies utilised in water and wastewater treatment by analysing scientific publications considering authors, keywords, and countries. To do this, the VOSviewer software and Bibliometrix R Package software were employed. The results of this study revealed that constructed wetlands and photocatalysis are two technologies that have been considered as green technologies applicable to the improvement of water and wastewater treatment processes in most scientific articles.
Matched MeSH terms: Conservation of Natural Resources/methods
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Matched MeSH terms: Conservation of Natural Resources/methods
Tropical rainforests of Latin America (LATAM) are one of the world's largest carbon sinks, with substantial future carbon sequestration potential and contributing a major proportion of the global supply of forest carbon credits. LATAM is poised to contribute predominantly towards high-quality forest carbon offset projects designed to reduce emissions from deforestation and forest degradation, halt biodiversity loss, and provide equitable conservation benefits to people. Thus, carbon markets, including compliance carbon markets and voluntary carbon markets continue to expand in LATAM. However, the extent of the growth and status of forest carbon markets, pricing initiatives, stakeholders, amongst others, are yet to be explored and extensively reviewed for the entire LATAM region. Against this backdrop, we reviewed a total of 299 articles, including peer-reviewed and non-scientific gray literature sources, from January 2010 to March 2023. Herein, based on the extensive literature review, we present the results and provide perspectives classified into five categories: (i) the status and recent trends of forest carbon markets (ii) the interested parties and their role in the forest carbon markets, (iii) the measurement, reporting and verification (MRV) approaches and role of remote sensing, (iv) the challenges, and (v) the benefits, opportunities, future directions and recommendations to enhance forest carbon markets in LATAM. Despite the substantial challenges, better governance structures for forest carbon markets can increase the number, quality and integrity of projects and support the carbon sequestration capacity of the rainforests of LATAM. Due to the complex and extensive nature of forest carbon projects in LATAM, emerging technologies like remote sensing can enable scale and reduce technical barriers to MRV, if properly benchmarked. The future directions and recommendations provided are intended to improve upon the existing infrastructure and governance mechanisms, and encourage further participation from the public and private sectors in forest carbon markets in LATAM.
Matched MeSH terms: Conservation of Natural Resources/methods
Accurately estimating population sizes for free-ranging animals through noninvasive methods, such as camera trap images, remains particularly limited by small datasets. To overcome this, we developed a flexible model for estimating upper limit populations and exemplified it by studying a group-living synanthrope, the long-tailed macaque (Macaca fascicularis). Habitat preference maps, based on environmental and GPS data, were generated with a maximum entropy model and combined with data obtained from camera traps, line transect distance sampling, and direct sightings to produce an expected number of individuals. The mapping between habitat preference and number of individuals was optimized through a tunable parameter ρ (inquisitiveness) that accounts for repeated observations of individuals. Benchmarking against published data highlights the high accuracy of the model. Overall, this approach combines citizen science with scientific observations and reveals the long-tailed macaque populations to be (up to 80%) smaller than expected. The model's flexibility makes it suitable for many species, providing a scalable, noninvasive tool for wildlife conservation.
Matched MeSH terms: Conservation of Natural Resources/methods