Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R
    AMB Express, 2017 Dec;7(1):41.
    PMID: 28205102 DOI: 10.1186/s13568-017-0339-8
    An earlier electrochemical mechanism of DNA detection was adapted and specified for the detection of Vibrio parahaemolyticus in real samples. The reader, based on a screen printed carbon electrode, was modified with polylactide-stabilized gold nanoparticles and methylene blue was employed as the redox indicator. Detection was assessed using a microprocessor to measure current response under controlled potential. The fabricated sensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0 × 10(-8)-2.0 × 10(-13) M with a detection limit of 2.16 pM. The relative standard deviation for 6 replications of differential pulse voltammetry (DPV) measurement of 0.2 µM complementary DNA was 4.33%. Additionally, cross-reactivity studies against various other food-borne pathogens showed a reliably sensitive detection of the target pathogen. Successful identification of Vibrio parahaemolyticus (spiked and unspiked) in fresh cockles, combined with its simplicity and portability demonstrate the potential of the device as a practical screening tool.
  2. Radu S, Vincent M, Apun K, Abdul-Rahim R, Benjamin PG, Yuherman, et al.
    Acta Trop, 2002 Aug;83(2):169-76.
    PMID: 12088858
    Bacterial resistance to various antimicrobial agents is common in area with high usage of antibiotics. In this study, the data on antimicrobial susceptibility patterns of Vibrio cholerae O1 from patients during an outbreak period was found to be high but variable rates of multidrug resistance. Thirty-two of 33 V. cholerae isolates harboured the tcp, ctx, zot and ace genes, suggesting their possible roles in the outbreak cases. We analyzed the molecular diversity of a total of 33 strains of V. cholerae O1 isolated from 33 patients between November 1997 and April 1998 using random amplified polymorphic DNA (RAPD) analysis. The 30 typable isolates could be separated into four major clusters containing 5, 17, 2 and 6 isolates, respectively. However, no particular RAPD pattern was predictive of a particular pattern of antibiotic susceptibility. The findings of this study showed that multiple clones seemed to be responsible for cases in the outbreaks in the study area.
  3. Khoo CH, Cheah YK, Lee LH, Sim JH, Salleh NA, Sidik SM, et al.
    Antonie Van Leeuwenhoek, 2009 Nov;96(4):441-57.
    PMID: 19565351 DOI: 10.1007/s10482-009-9358-z
    The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg microl(-1). This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.
  4. Learn-Han L, Yoke-Kqueen C, Salleh NA, Sukardi S, Jiun-Horng S, Chai-Hoon K, et al.
    Antonie Van Leeuwenhoek, 2008 Oct;94(3):377-87.
    PMID: 18548329 DOI: 10.1007/s10482-008-9254-y
    Forty-eight strains of Salmonella enterica subsp. enterica serovar Agona and 33 strains of Salmonella enterica subsp. enterica serovar Weltevreden were characterized by random amplified polymorphic DNA (RAPD) fingerprinting using 3 different arbitrary primer, Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR) and antimicrobial susceptibility testing. By using RAPD, 81 strains (44 strains of S. Agona and 33 strains of S. Weltevreden) can be clustered into 14 groups and 6 single isolates whereas ERIC-PCR produced 7 clusters and 3 single isolates. Thirteen antimicrobial agents were used and all the isolates were resistant to erythromycin and showed Multiple Antimicrobial Resistance indexes, ranging from 0.08 to 0.62. Poultry still remain as the common reservoir for multi-drug-resistant Salmonella. On the other hand, vegetables contaminated with S. Weltevreden showed a gain in antimicrobial resistance. Besides that, consistent antibiograms were observed from S. Weltevreden isolated at Kajang wet market on 2000/08/02.
  5. Chen CH, Shimada T, Elhadi N, Radu S, Nishibuchi M
    Appl Environ Microbiol, 2004 Apr;70(4):1964-72.
    PMID: 15066786
    Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.
  6. Ramli S, Radu S, Shaari K, Rukayadi Y
    Biomed Res Int, 2017;2017:9024246.
    PMID: 29410966 DOI: 10.1155/2017/9024246
    The aim of this study was to determine antibacterial activity of S. polyanthum L. (salam) leaves extract foodborne pathogens. All the foodborne pathogens were inhibited after treating with extract in disk diffusion test with range 6.67 ± 0.58-9.67 ± 0.58 mm of inhibition zone. The range of MIC values was between 0.63 and 1.25 mg/mL whereas MBC values were in the range 0.63 mg/mL to 2.50 mg/mL. In time-kill curve, L. monocytogenes and P. aeruginosa were found completely killed after exposing to extract in 1 h incubation at 4x MIC. Four hours had been taken to completely kill E. coli, S. aureus, V. cholerae, and V. parahaemolyticus at 4x MIC. However, the population of K. pneumoniae, P. mirabilis, and S. typhimurium only reduced to 3 log CFU/mL. The treated cell showed cell rupture and leakage of the cell cytoplasm in SEM observation. The significant reduction of natural microflora in grapes fruit was started at 0.50% of extract at 5 min and this concentration also was parallel to sensory attributes acceptability where application of extract was accepted by the panellists until 5%. In conclusion, S. polyanthum extract exhibits antimicrobial activities and thus might be developed as natural sanitizer for washing raw food materials.
  7. Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R
    Biosens Bioelectron, 2016 Dec 15;86:398-405.
    PMID: 27414245 DOI: 10.1016/j.bios.2016.06.077
    A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP.
  8. Kuan CH, Wong WC, Pui CF, Mahyudin NA, Tang JY, Nishibuchi M, et al.
    Braz J Microbiol, 2013 Dec;44(4):1169-72.
    PMID: 24688507 DOI: 10.1590/S1517-83822014005000002
    A total of 63 beef offal samples (beef liver = 16; beef lung = 14; beef intestine = 9; beef tripe = 15; beef spleen = 9) from three wet markets (A, B, and C) in Selangor, Malaysia were examined for the prevalence and microbial load of Listeria monocytogenes. A combination of the most probable number and polymerase chain reaction (MPN-PCR) method was employed in this study. It was found that L. monocytogenes detected in 33.33% of the beef offal samples. The prevalence of L. monocytogenes in beef offal purchased from wet markets A, B, and C were 22.73%, 37.50% and 41.18% respectively. The density of L. monocytogenes in all the samples ranged from < 3 up to > 2,400 MPN/g. The findings in this study indicate that beef offal can be a potential vehicle of foodborne listeriosis.
  9. Premarathne JMKJK, Satharasinghe DA, Huat JTY, Basri DF, Rukayadi Y, Nakaguchi Y, et al.
    Crit Rev Food Sci Nutr, 2017 Dec 12;57(18):3971-3986.
    PMID: 28001082 DOI: 10.1080/10408398.2016.1266297
    Campylobacter is globally recognized as a major cause of foodborne infection in humans, whilst the development of antimicrobial resistance and the possibility of repelling therapy increase the threat to public health. Poultry is the most frequent source of Campylobacter infection in humans, and southeast Asia is a global leader in poultry production, consumption, and exports. Though three of the world's top 20 most populated countries are located in southeast Asia, the true burden of Campylobacter infection in the region has not been fully elucidated. Based on published data, Campylobacter has been reported in humans, animals, and food commodities in the region. To our knowledge, this study is the first to review the status of human Campylobacter infection in southeast Asia and to discuss future perspectives. Gaining insight into the true burden of the infection and prevalence levels of Campylobacter spp. in the southeast Asian region is essential to ensuring global and regional food safety through facilitating improvements in surveillance systems, food safety regulations, and mitigation strategies.
  10. Permatasari HK, Nurkolis F, Vivo CD, Noor SL, Rahmawati R, Radu S, et al.
    F1000Res, 2021;10:789.
    PMID: 36237995 DOI: 10.12688/f1000research.55307.3
    Background: This study aimed to determine the potential anti-aging effects of sea grapes and tempe (fermented soybeans) collagen particle size, by measuring the activities of anti-glycation, antioxidant, and tyrosinase inhibitors. Methods: Collagen was isolated from freeze-dried sea grapes and tempe powder and treated with different NaOH concentrations (0.10 M; 0.20 M; 0.30 M), and CH 3COOH 1 M solution, separately. The collagen particle size was adjusted by stirring at 1000 rpm for 5 and 10 hours. 2,2-diphenyl-1-picrylhydrazyl (DPPH) was used to measure the antioxidant activity, and L-tyrosine and L-DOPA (l-3,4-dihydroxyphenylalanine) was used as a marker of tyrosine inhibition.  Results:  The collagen treated with 0.10 M NaOH produced the highest collagen yield (11.65%), and the largest particle size (2455 nm). Additionally, this collagen, when treated for 5 hours, exhibited 24.70% antioxidant activity, 62.60% anti-glycation, 8.97% L-tyrosine, and 26.77% L-Dopa inhibition activities. Meanwhile, the collagen treated for 10 hours had a 9.98% antioxidant activity, 41.48% anti-glycation, 7.89% L-tyrosine, and 2.67% L-Dopa inhibition activity.  Conclusion: Sea grapes and tempe collagen powder treated with 0.10 M NaOH and stirred for 5 hours, possess the best potential anti-aging properties as a functional food.
  11. Bilung LM, Radu S, Bahaman AR, Rahim RA, Napis S, Ling MW, et al.
    FEMS Microbiol Lett, 2005 Nov 1;252(1):85-8.
    PMID: 16216442
    This study aimed to determine the occurrence of Vibrio parahaemolyticus in cockles (Anadara granosa) at a harvesting area and to detect the presence of virulent strains carrying the thermostable direct hemolysin (tdh) and TDH-related hemolysin genes (trh) using PCR. Of 100 samples, 62 were positive for the presence of V. parahaemolyticus with an MPN (most probable number) value greater than 3.0 (>1100 MPN per g). The PCR analysis revealed 2 samples to be positive for the tdh gene and 11 to be positive for the trh gene. Hence, these results demonstrate the presence of pathogenic V. parahaemolyticus in cockles harvested in the study area and reveal the potential risk of illness associated with their consumption.
  12. Haryani Y, Halid NA, Guat GS, Nor-Khaizura MAR, Hatta A, Sabri S, et al.
    FEMS Microbiol Lett, 2023 Jan 17;370.
    PMID: 37002414 DOI: 10.1093/femsle/fnad023
    The present work investigated the profile and biodiversity of lactic acid bacteria (LAB) isolated from selected manufactured and homemade fermented foods in Malaysia. A total of 55 LAB were isolated from 20 samples, and identified based on the sequencing of 16S rRNA gene. The LAB isolates were identified as Lacticaseibacillus rhamnosus (34.5%), Lactiplantibacillus plantarum (20%), Limosilactobacillus fermentum (20%), Lacticaseibacillus paracasei (12.7%), Lacticaseibacillus casei (3.6%), Lactobacillus sp. (1.8%), Enterococcus faecalis (3.6%), Enterococcus faecium (1.8%), and Enterococcus durans (1.8%). Majority (94%) of the LAB isolates exhibited broad-spectrum antimicrobial activity against selected foodborne pathogens, and four isolates (L. fermentum SC1001, L. paracasei K2003, and L. rhamnosus KF1002 and MK2003) could produce bacteriocin-like inhibitory substance (BLIS). Lacticaseibacillus paracasei M1001 (homemade mozzarella) exhibited high-temperature tolerance and acid resistance, was homofermentative, and generated good antimicrobial activity, which strongly implied its potential for industrial applications. The present work results would potentially widen our knowledge of LAB diversity in Malaysian fermented foods and provide a potential for their applications in the food industry or other purposes.
  13. Norlia M, Nor-Khaizura MAR, Selamat J, Abu Bakar F, Radu S, Chin CK
    PMID: 29912639 DOI: 10.1080/19440049.2018.1488276
    The peanut supply chain in Malaysia is dominated by three main stakeholders (importers, manufacturers, retailers). The present study aimed to determine the levels and critical points of aflatoxin and fungal contamination in peanuts along the supply chain. Specifically, two types of raw peanuts and six types of peanut-based products were collected (N = 178). Samples were analysed for aflatoxins by using high-performance liquid chromatography. Results revealed that the aflatoxin contamination was significantly higher (P ≤ 0.05) in raw peanuts and peanut-based products from the retailers. However, there was no significant difference (P ≥ 0.05) in fungal contamination for both types of peanuts except for the total fungal count in raw peanuts from the retailers. Furthermore, raw peanut kernels from the retailers were the most contaminated ones ranged from
  14. Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, Hara H, et al.
    Front Microbiol, 2021;12:616548.
    PMID: 33776954 DOI: 10.3389/fmicb.2021.616548
    Vibrio parahaemolyticus is a foodborne pathogen that is frequently isolated from a variety of seafood. To control this pathogenic Vibrio spp., the implementation of bacteriophages in aquaculture and food industries have shown a promising alternative to antibiotics. In this study, six bacteriophages isolated from the seafood samples demonstrated a narrow host range specificity that infecting only the V. parahaemolyticus strains. Morphological analysis revealed that bacteriophages Vp33, Vp22, Vp21, and Vp02 belong to the Podoviridae family, while bacteriophages Vp08 and Vp11 were categorized into the Siphoviridae family. All bacteriophages were composed of DNA genome and showed distinctive restriction fragment length polymorphism. The optimal MOI for bacteriophage propagation was determined to be 0.001 to 1. One-step growth curve revealed that the latent period ranged from 10 to 20 min, and the burst size of bacteriophage was approximately 17 to 51 PFU/cell. The influence of temperature and pH levels on the stability of bacteriophages showed that all bacteriophages were optimally stable over a wide range of temperatures and pH levels. In vitro lytic activity of all bacteriophages demonstrated to have a significant effect against V. parahaemolyticus. Besides, the application of a bacteriophage cocktail instead of a single bacteriophage suspension was observed to have a better efficiency to control the growth of V. parahaemolyticus. Results from this study provided a basic understanding of the physiological and biological properties of the isolated bacteriophages before it can be readily used as a biocontrol agent against the growth of V. parahaemolyticus.
  15. Tan CW, Malcolm TTH, Kuan CH, Thung TY, Chang WS, Loo YY, et al.
    Front Microbiol, 2017;8:1087.
    PMID: 28659901 DOI: 10.3389/fmicb.2017.01087
    Numerous prevalence studies and outbreaks of Vibrio parahaemolyticus infection have been extensively reported in shellfish and crustaceans. Information on the quantitative detection of V. parahaemolyticus in finfish species is limited. In this study, short mackerels (Rastrelliger brachysoma) obtained from different retail marketplaces were monitored with the presence of total and pathogenic strains of V. parahaemolyticus. Out of 130 short mackerel samples, 116 (89.2%) were detected with the presence of total V. parahaemolyticus and microbial loads of total V. parahaemolyticus ranging from <3 to >10(5) MPN/g. Prevalence of total V. parahaemolyticus was found highest in wet markets (95.2%) followed by minimarkets (89.1%) and hypermarkets (83.3%). Pathogenic V. parahaemolyticus strains (tdh+ and/or trh+) were detected in 16.2% (21 of 130) of short mackerel samples. The density of tdh+ V. parahaemolyticus strains were examined ranging from 3.6 to >10(5) MPN/g and microbial loads of V. parahaemolyticus strains positive for both tdh and trh were found ranging from 300 to 740 MPN/g. On the other hand, antibiotic susceptibility profiles of V. parahaemolyticus strains isolated from short mackerels were determined through disc diffusion method in this study. Assessment of antimicrobial susceptibility profile of V. parahaemolyticus revealed majority of the isolates were highly susceptible to ampicillin sulbactam, meropenem, ceftazidime, and imipenem, but resistant to penicillin G and ampicillin. Two isolates (2.99%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.41 which shown resistance to 7 antibiotics. Results of the present study demonstrated that the occurrence of pathogenic V. parahaemolyticus strains in short mackerels and multidrug resistance of V. parahaemolyticus isolates could be a potential public health concerns to the consumer. Furthermore, prevalence data attained from the current study can be further used to develop a microbial risk assessment model to estimate health risks associated with the consumption of short mackerels contaminated with pathogenic V. parahaemolyticus.
  16. Loo YY, Rukayadi Y, Nor-Khaizura MA, Kuan CH, Chieng BW, Nishibuchi M, et al.
    Front Microbiol, 2018;9:1555.
    PMID: 30061871 DOI: 10.3389/fmicb.2018.01555
    Silver nanoparticles (AgNPs) used in this study were synthesized using pu-erh tea leaves extract with particle size of 4.06 nm. The antibacterial activity of green synthesized AgNPs against a diverse range of Gram-negative foodborne pathogens was determined using disk diffusion method, resazurin microtitre-plate assay (minimum inhibitory concentration, MIC), and minimum bactericidal concentration test (MBC). The MIC and MBC of AgNPs against Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, and Salmonella Enteritidis were 7.8, 3.9, 3.9, 3.9 and 7.8, 3.9, 7.8, 3.9 μg/mL, respectively. Time-kill curves were used to evaluate the concentration between MIC and bactericidal activity of AgNPs at concentrations ranging from 0×MIC to 8×MIC. The killing activity of AgNPs was fast acting against all the Gram-negative bacteria tested; the reduction in the number of CFU mL-1 was >3 Log10 units (99.9%) in 1-2 h. This study indicates that AgNPs exhibit a strong antimicrobial activity and thus might be developed as a new type of antimicrobial agents for the treatment of bacterial infection including multidrug resistant bacterial infection.
  17. Thung TY, Radu S, Mahyudin NA, Rukayadi Y, Zakaria Z, Mazlan N, et al.
    Front Microbiol, 2017;8:2697.
    PMID: 29379488 DOI: 10.3389/fmicb.2017.02697
    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.
  18. Norlia M, Jinap S, Nor-Khaizura MAR, Radu S, Samsudin NIP, Azri FA
    Front Microbiol, 2019;10:2602.
    PMID: 31824445 DOI: 10.3389/fmicb.2019.02602
    Aflatoxin contamination in foods is a global concern as they are carcinogenic, teratogenic and mutagenic compounds. The aflatoxin-producing fungi, mainly from the Aspergillus section Flavi, are ubiquitous in nature and readily contaminate various food commodities, thereby affecting human's health. The incidence of aflatoxigenic Aspergillus spp. and aflatoxins in various types of food, especially raw peanuts and peanut-based products along the supply chain has been a concern particularly in countries having tropical and sub-tropical climate, including Malaysia. These climatic conditions naturally support the growth of Aspergillus section Flavi, especially A. flavus, particularly when raw peanuts and peanut-based products are stored under inappropriate conditions. Peanut supply chain generally consists of several major stakeholders which include the producers, collectors, exporters, importers, manufacturers, retailers and finally, the consumers. A thorough examination of the processes along the supply chain reveals that Aspergillus section Flavi and aflatoxins could occur at any step along the chain, from farm to table. Thus, this review aims to give an overview on the prevalence of Aspergillus section Flavi and the occurrence of aflatoxins in raw peanuts and peanut-based products, the impact of aflatoxins on global trade, and aflatoxin management in peanuts with a special focus on peanut supply chain in Malaysia. Furthermore, aflatoxin detection and quantification methods as well as the identification of Aspergillus section Flavi are also reviewed herein. This review could help to shed light to the researchers, peanut stakeholders and consumers on the risk of aflatoxin contamination in peanuts along the supply chain.
  19. Premarathne JMKJK, Anuar AS, Thung TY, Satharasinghe DA, Jambari NN, Abdul-Mutalib NA, et al.
    Front Microbiol, 2017;8:2254.
    PMID: 29255448 DOI: 10.3389/fmicb.2017.02254
    Campylobacter is a major foodborne pathogen frequently associated with human bacterial gastroenteritis in the world. This study was conducted to determine the prevalence and antibiotic resistance of Campylobacter spp. in the beef food system in Malaysia. A total of 340 samples consisting of cattle feces (n = 100), beef (n = 120) from wet markets and beef (n = 120) from hypermarkets were analyzed for Campylobacter spp. The overall prevalence of Campylobacter was 17.4%, consisting of 33% in cattle fecal samples, 14.2% in raw beef from wet market and 7.5% in raw beef from the hypermarket. The multiplex-polymerase chain reaction (PCR) identified 55% of the strains as C. jejuni, 26% as C. coli, and 19% as other Campylobacter spp. A high percentage of Campylobacter spp. were resistant to tetracycline (76.9%) and ampicillin (69.2%), whilst low resistance was exhibited to chloramphenicol (7.6%). The MAR Index of Campylobacter isolates from this study ranged from 0.09 to 0.73. The present study indicates the potential public health risk associated with the beef food system, hence stringent surveillance, regulatory measures, and appropriate interventions are required to minimize Campylobacter contamination and prudent antibiotic usage that can ensure consumer safety.
  20. Kuan CH, Rukayadi Y, Ahmad SH, Wan Mohamed Radzi CWJ, Thung TY, Premarathne JMKJK, et al.
    Front Microbiol, 2017;8:1433.
    PMID: 28824567 DOI: 10.3389/fmicb.2017.01433
    Given the remarkable increase of public interest in organic food products, it is indeed critical to evaluate the microbiological risk associated with consumption of fresh organic produce. Organic farming practices including the use of animal manures may increase the risk of microbiological contamination as manure can act as a vehicle for transmission of foodborne pathogens. This study aimed to determine and compare the microbiological status between organic and conventional fresh produce at the retail level in Malaysia. A total of 152 organic and conventional vegetables were purchased at retail markets in Malaysia. Samples were analyzed for mesophilic aerobic bacteria, yeasts and molds, and total coliforms using conventional microbiological methods. Combination methods of most probable number-multiplex polymerase chain reaction (MPN-mPCR) were used to detect and quantify foodborne pathogens, including Escherichia coli O157:H7, Shiga toxin-producing E. coli (STEC), Listeria monocytogenes, Salmonella Typhimurium, and Salmonella Enteritidis. Results indicated that most types of organic and conventional vegetables possessed similar microbial count (P > 0.05) of mesophilic aerobic bacteria, yeasts and molds, and total coliforms. E. coli O157:H7 and S. Typhimurium were not detected in any sample analyzed in this study. Among the 152 samples tested, only the conventional lettuce and organic carrot were tested positive for STEC and S. Enteritidis, respectively. L. monocytogenes were more frequently detected in both organic (9.1%) and conventional vegetables (2.7%) as compared to E. coli O157:H7, S. Typhimurium, and S. Enteritidis. Overall, no trend was shown that either organically or conventionally grown vegetables have posed greater microbiological risks. These findings indicated that one particular type of farming practices would not affect the microbiological profiles of fresh produce. Therefore, regardless of farming methods, all vegetables should be subjected to appropriate post-harvest handling practices from farm to fork to ensure the quality and safety of the fresh produce.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links