Displaying all 10 publications

Abstract:
Sort:
  1. Perumal S, Mahmud R
    PMID: 24321370 DOI: 10.1186/1472-6882-13-346
    The frequent occurrences of antibiotic-resistant biofilm forming pathogens have become global issue since various measures that had been taken to curb the situation led to failure. Euphorbia hirta, is a well-known ethnomedicinal plant of Malaysia with diverse biological activities. This plant has been used widely in traditional medicine for the treatment of gastrointestinal, bronchial and respiratory ailments caused by infectious agents.
  2. Shanmugapriya, Sasidharan S
    3 Biotech, 2020 May;10(5):206.
    PMID: 32346497 DOI: 10.1007/s13205-020-02193-6
    MicroRNAs are endogenous small non-coding-RNAs that control gene expression and cancer development. Previous studies reported that Polyalthia longifolia treatment induced apoptotic cell death in HeLa cells by down-regulation of miR-221-5p. Hence, the current study was conducted to validate the down-regulated miR-221-5p in HeLa cells. Functional analysis of miR-221-5p was conducted through the gain-of-function, and loss-of-function approach and the miRNA expression was quantified by a real-time polymerase chain reaction. The P. longifolia treatment significantly (p 
  3. Perumal S, Mahmud R, Ismail S
    Pharmacogn Mag, 2017 Jul;13(Suppl 2):S311-S315.
    PMID: 28808398 DOI: 10.4103/pm.pm_309_15
    BACKGROUND: The escalating dominance of resistant Pseudomonas aeruginosa strains as infectious pathogen had urged the researchers to look for alternative and complementary drugs.

    OBJECTIVE: The objective of this study is to address the biological targets and probable mechanisms of action underlying the potent antibacterial effect of the isolated compounds from Euphorbia hirta (L.) against P. aeruginosa.

    MATERIALS AND METHODS: The action mechanisms of caffeic acid (CA) and epicatechin 3-gallate (ECG) on P. aeruginosa cells were investigated by several bacterial physiological manifestations involving outer membrane permeabilization, intracellular potassium ion efflux, and nucleotide leakage.

    RESULTS: The findings revealed that ECG and CA targeted both cell wall and cytoplasmic membrane of P. aeruginosa. The cellular membrane destruction and ensuing membrane permeability perturbation of P. aeruginosa had led to the ascending access of hydrophobic antibiotics, release of potassium ions, and leakages of nucleotides.

    CONCLUSION: The overall study concludes that ECG and CA isolated from E. hirta possess remarkable anti-infective potentials which can be exploited as drug template for the development of new antibacterial agent against resistant P. aeruginosa pathogen.

    SUMMARY: Epicatechin 3-gallate (ECG) and caffeic acid (CA) exhibited remarkable bactericidal abilities by increasing the outer membrane and plasma membrane permeability of Pseudomonas aeruginosa pathogenECG and CA had facilitated the entry of hydrophobic antibiotics into P. aeruginosa by disintegrating the lipopolysaccharides layer of the outer membraneECG-induced potassium efflux with efficiency close to that obtained with cefepime suggesting mode of action through membrane disruptionBoth ECG and CA had caused consistent leakage of intracellular nucleotide content with the increase in time. Abbreviations used: ECG: Epicatechin 3-gallate; CA: Caffeic acid; E. hirta: Euphoria hirta.

  4. Perumal S, Mahmud R, Mohamed N
    PMID: 30108657 DOI: 10.1155/2018/5713703
    Pseudomonas aeruginosa is naturally resistant to many classes of antipseudomonal antibiotics due to the species ability to easily acquire resistance. Plant-based antibacterial agent in combination with the existing antibiotic proposes an alternative treatment regimen for the eradication of resistant bacterial infections. The antibacterial effects of the isolated epicatechin 3-gallate compound from Euphorbia hirta in combination with cefepime were investigated in vitro against resistant P. aeruginosa. The fractional inhibitory concentration index of the combination was determined using checkerboard broth microdilution method. Epicatechin 3-gallate combined with cefepime had produced synergistic effect against P. aeruginosa (with average FIC index of 0.24). The MIC of epicatechin 3-gallate was effectively reduced to MIC/4, MIC/8, MIC/16, and MIC/32 in the presence of cefepime. Time-kill study of epicatechin 3-gallate combined with cefepime exhibited remarkable bactericidal activity where the eradication of P. aeruginosa occurred within 4 h of treatment. Scanning electron micrographs revealed apparent cell membrane damage and leakage of cytoplasmic contents from P. aeruginosa cells which eventually led to the cell lysis after the combination treatment of epicatechin 3-gallate and cefepime. The potential of epicatechin 3-gallate to act synergistically with cefepime against clinically resistant P. aeruginosa strain possibly will maximize the successful outcomes when choosing empirical antibiotic treatment in hospitals or health care institutions.
  5. Shanmugapriya, Othman N, Sasidharan S
    3 Biotech, 2020 Sep;10(9):399.
    PMID: 32850286 DOI: 10.1007/s13205-020-02396-x
    The current study was conducted to validate the target proteins of down-regulated miR-221-5p in HeLa cells treated with P. longifolia leaf extract. The validation was done by label-free quantitative proteomics approaches, Gene Ontology (GO) and protein-protein interaction analyses after the cells transfected with miRNA mimics or miRNA inhibitor. The LC-ESI-MS/MS identified a total of 1061, 668, 564 and 940 proteins from untransfected and untreated HeLa cells, untransfected P. longifolia leaf extract-treated HeLa cells, miR-221-5p mimic-transfected P. longifolia leaf extract-treated HeLa cells and anti-miR-221-5p-transfected P. longifolia leaf extract-treated HeLa cells, respectively. The proteomic, GO and protein-protein interaction analyses showed that P. longifolia treatment regulated various protein expressions in HeLa cells, namely tropomyosin, PRKC apoptosis WT1 regulator protein (PAWR), alpha-enolase and beta-enolase, which induced apoptotic cell death after the down-regulation of miR-221-5p. Conclusively, this study showed P. longifolia leaf extract's vital contribution in regulating various protein expressions in HeLa cervical cancer cells to induce apoptotic cell death after downregulation miR-221-5p.
  6. Shanmugapriya, Vijayarathna S, Sasidharan S
    Microsc Microanal, 2019 10;25(5):1263-1272.
    PMID: 31383043 DOI: 10.1017/S1431927619014776
    Several microscopy methods have been developed to assess the morphological changes in cells in the investigations of the mode of cell death in response to a stimulus. Our recent finding on the treatment of the IC50 concentration (26.67 μg/mL) of Polyalthia longifolia leaf extract indicated the induction of apoptotic cell death via the regulation of miRNA in HeLa cells. Hence, the current study was conducted to validate the function of these downregulated microRNAs in P. longifolia-treated HeLa cells using microscopic approaches. These include scanning electron microscope (SEM), transmission electron microscope (TEM), and acridine orange/propidium iodide (AO/PI)-based fluorescent microscopy techniques by observing the morphological alterations to cells after transfection with mimic miRNA. Interestingly, the morphological changes observed in this study demonstrated the apoptotic hallmarks, for instance, cell blebbing, cell shrinkage, cytoplasmic and nuclear condensation, vacuolization, cytoplasmic extrusion, and the formation of apoptotic bodies, which proved the role of dysregulated miRNAs in apoptotic HeLa cell death after treatment with the P. longifolia leaf extract. Conclusively, the current study proved the crucial role of downregulated miR-484 and miR-221-5p in the induction of apoptotic cell death in P. longifolia-treated HeLa cells using three approaches-SEM, TEM, and AO/PI-based fluorescent microscope.
  7. Shanmugapriya, Chen Y, Kanwar JR, Sasidharan S
    Nutr Cancer, 2017 10 25;69(8):1308-1324.
    PMID: 29068745 DOI: 10.1080/01635581.2017.1367944
    This study was conducted to investigate the anticancer effects and mechanism of Calophyllum inophyllum fruit extract against MCF-7 cells. C. inophyllum fruit extract was found to have markedly cytotoxic effect against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 23.59 µg/mL. Flow cytometry analysis revealed that C. inophyllum fruit extract mediated cell cycle at G0/G1 and G2/M phases, and MCF-7 cells entered the early phase of apoptosis. The expression of anti-apoptotic proteins Bcl-2 was decreased whereas the expression of the pro-apoptotic protein Bax, cytochrome C and p53 were increased after treatment. C. inophyllum fruit extract led to apoptosis in MCF-7 cells via the mitochondrial pathway in a dose dependent manner. This is evidenced by the elevation of intracellular ROS, the loss of mitochondria membrane potential (Δψm), and activation of caspase-3. Meanwhile, dose-dependent genomic DNA fragmentation was observed after C. inophyllum fruits extract treatment by comet assay. This study shows that C. inophyllum fruits extract-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3. C. inophyllum fruit extract could be an excellent source of chemopreventive agent in the treatment of breast cancer and has potential to be explored as green anticancer agent.
  8. Shanmugapriya, Huda HA, Vijayarathna S, Oon CE, Chen Y, Kanwar JR, et al.
    Adv Exp Med Biol, 2018 9 28;1087:95-105.
    PMID: 30259360 DOI: 10.1007/978-981-13-1426-1_8
    Circular RNAs characterize a class of widespread and diverse endogenous RNAs which are non-coding RNAs that are made by back-splicing events and have covalently closed loops with no polyadenylated tails. Various indications specify that circular RNAs (circRNAs) are plentiful in the human transcriptome. However, their participation in biological processes remains mostly undescribed. To date thousands of circRNAs have been revealed in organisms ranging from Drosophila melanogaster to Homo sapiens. Functional studies specify that these transcripts control expression of protein-coding linear transcripts and thus encompass a key component of gene expression regulation. This chapter provide a comprehensive overview on functional validation of circRNAs. Furthermore, we discuss the recent modern methodologies for the functional validation of circRNAs such as RNA interference (RNAi) gene silencing assay, luciferase reporter assays, circRNA gain-of-function investigation via overexpression of circular transcript assay, RT-q-PCR quantification, and other latest applicable assays. The methods described in this chapter are demonstrated on the cellular model.
  9. Kavitha N, Vijayarathna S, Shanmugapriya, Oon CE, Chen Y, Kanwar JR, et al.
    J Ethnopharmacol, 2018 Mar 01;213:118-131.
    PMID: 29154802 DOI: 10.1016/j.jep.2017.11.009
    ETHNOPHARMACOLOGICAL RELEVANCE: Phaleria macrocarpa (Scheff) Boerl, is a famous traditional medicinal plant which exhibited cytotoxicity against various cancerous cells. Traditionally, P. macrocarpa has been used to control cancer, impotency, hemorrhoids, diabetes mellitus, allergies, liver and heart disease, kidney disorders, blood diseases, acne, stroke, migraine, and various skin diseases.

    AIM OF THE STUDY: Recent studies have demonstrated a potent anticancer potential of P. macrocarpa, especially against HeLa cell. The objective of this study was to investigate the regulation of miRNAs on MDA-MB-231 treated with P. macrocarpa ethyl acetate fraction (PMEAF).

    MATERIALS AND METHODS: The regulation of miRNAs on MDA-MB-231 cells treated with PMEAF was studied through IIlumina, Hi-Seq. 2000 platform of Next Generation Sequencing (NGS) and various in silico bioinformatics tools.

    RESULTS: The PMEAF treatment against MDA-MB-231 cells identified 10 upregulated and 10 downregulated miRNAs. A set of 606 target genes of 10 upregulated miRNAs and 517 target genes of 10 downregulated miRNAs were predicted based on computational and validated databases by using miRGate DB Query. Meanwhile, results from DAVID Bioinformatics Resources 6.8 specified the functional annotation of the upregulated miRNAs involvement in cancer pathway by suppressing the oncogenes and downregulating miRNAs by expressing the tumour suppressor genes in the regulation of apoptosis pathway.

    CONCLUSION: In conclusion, the results of this study proved that PMEAF is a promising anticancer agent with high cytotoxicity against MDA-MB-231 breast cancer cells and it induced apoptotic cell death mechanism through the regulation of miRNAs. PMEAF might be the best candidate for developing more potent anticancer drugs or chemo preventive supplements.

  10. Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, et al.
    Noncoding RNA Res, 2024 Dec;9(4):1140-1158.
    PMID: 39022680 DOI: 10.1016/j.ncrna.2024.06.003
    Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links