Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Wong CL, Yong CY, Muhamad A, Syahir A, Omar AR, Sieo CC, et al.
    Appl Microbiol Biotechnol, 2018 May;102(9):4131-4142.
    PMID: 29564523 DOI: 10.1007/s00253-018-8921-9
    Foot-and-mouth disease (FMD) is a major threat to the livestock industry worldwide. Despite constant surveillance and effective vaccination, the perpetual mutations of the foot-and-mouth disease virus (FMDV) pose a huge challenge to FMD diagnosis. The immunodominant region of the FMDV VP1 protein (residues 131-170) displayed on phage T7 has been used to detect anti-FMDV in bovine sera. In the present study, the functional epitope was further delineated using amino acid sequence alignment, homology modelling and phage display. Two highly conserved regions (VP1145-152 and VP1159-170) were identified among different FMDV serotypes. The coding regions of these two epitopes were fused separately to the T7 genome and displayed on the phage particles. Interestingly, chimeric phage displaying the VP1159-170 epitope demonstrated a higher antigenicity than that displaying the VP1131-170 epitope. By contrast, phage T7 displaying the VP1145-152 epitope did not react significantly with the anti-FMDV antibodies in vaccinated bovine sera. This study has successfully identified a smaller functional epitope, VP1159-170, located at the C-terminal end of the structural VP1 protein. The phage T7 displaying this shorter epitope is a promising diagnostic reagent to detect anti-FMDV antibodies in vaccinated animals.
  2. Sartini C, Lomivorotov V, Pisano A, Riha H, Baiardo Redaelli M, Lopez-Delgado JC, et al.
    J Cardiothorac Vasc Anesth, 2019 Oct;33(10):2685-2694.
    PMID: 31064730 DOI: 10.1053/j.jvca.2019.03.022
    OBJECTIVE: Reducing mortality is a key target in critical care and perioperative medicine. The authors aimed to identify all nonsurgical interventions (drugs, techniques, strategies) shown by randomized trials to increase mortality in these clinical settings.

    DESIGN: A systematic review of the literature followed by a consensus-based voting process.

    SETTING: A web-based international consensus conference.

    PARTICIPANTS: Two hundred fifty-one physicians from 46 countries.

    INTERVENTIONS: The authors performed a systematic literature search and identified all randomized controlled trials (RCTs) showing a significant increase in unadjusted landmark mortality among surgical or critically ill patients. The authors reviewed such studies during a meeting by a core group of experts. Studies selected after such review advanced to web-based voting by clinicians in relation to agreement, clinical practice, and willingness to include each intervention in international guidelines.

    MEASUREMENTS AND MAIN RESULTS: The authors selected 12 RCTs dealing with 12 interventions increasing mortality: diaspirin-crosslinked hemoglobin (92% of agreement among web voters), overfeeding, nitric oxide synthase inhibitor in septic shock, human growth hormone, thyroxin in acute kidney injury, intravenous salbutamol in acute respiratory distress syndrome, plasma-derived protein C concentrate, aprotinin in high-risk cardiac surgery, cysteine prodrug, hypothermia in meningitis, methylprednisolone in traumatic brain injury, and albumin in traumatic brain injury (72% of agreement). Overall, a high consistency (ranging from 80% to 90%) between agreement and clinical practice was observed.

    CONCLUSION: The authors identified 12 clinical interventions showing increased mortality supported by randomized controlled trials with nonconflicting evidence, and wide agreement upon clinicians on a global scale.

  3. Sartini C, Lomivorotov V, Pieri M, Lopez-Delgado JC, Baiardo Redaelli M, Hajjar L, et al.
    J Cardiothorac Vasc Anesth, 2019 05;33(5):1430-1439.
    PMID: 30600204 DOI: 10.1053/j.jvca.2018.11.026
    The authors aimed to identify interventions documented by randomized controlled trials (RCTs) that reduce mortality in adult critically ill and perioperative patients, followed by a survey of clinicians' opinions and routine practices to understand the clinicians' response to such evidence. The authors performed a comprehensive literature review to identify all topics reported to reduce mortality in perioperative and critical care settings according to at least 2 RCTs or to a multicenter RCT or to a single-center RCT plus guidelines. The authors generated position statements that were voted on online by physicians worldwide for agreement, use, and willingness to include in international guidelines. From 262 RCT manuscripts reporting mortality differences in the perioperative and critically ill settings, the authors selected 27 drugs, techniques, and strategies (66 RCTs, most frequently published by the New England Journal of Medicine [13 papers], Lancet [7], and Journal of the American Medical Association [5]) with an agreement ≥67% from over 250 physicians (46 countries). Noninvasive ventilation was the intervention supported by the largest number of RCTs (n = 13). The concordance between agreement and use (a positive answer both to "do you agree" and "do you use") showed differences between Western and other countries and between anesthesiologists and intensive care unit physicians. The authors identified 27 clinical interventions with randomized evidence of survival benefit and strong clinician support in support of their potential life-saving properties in perioperative and critically ill patients with noninvasive ventilation having the highest level of support. However, clinician views appear affected by specialty and geographical location.
  4. Chew KM, Seman N, Sudirman R, Yong CY
    Biomed Mater Eng, 2014;24(6):2161-7.
    PMID: 25226914 DOI: 10.3233/BME-141027
    The development of human-like brain phantom is important for data acquisition in microwave imaging. The characteristics of the phantom should be based on the real human body dielectric properties such as relative permittivity. The development of phantom includes the greymatter and whitematter regions, each with a relative permittivity of 38 and 28 respectively at 10 GHz frequency. Results were compared with the value obtained from the standard library of Computer Simulation Technology (CST) simulation application and the existing research by Fernandez and Gabriel. Our experimental results show a positive outcome, in which the proposed mixture was adequate to represent real human brain for data acquisition.
  5. Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW
    J Virol Methods, 2023 Sep;319:114771.
    PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771
    Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
  6. Wong CL, Yong CY, Ong HK, Ho KL, Tan WS
    Front Vet Sci, 2020;7:477.
    PMID: 32974392 DOI: 10.3389/fvets.2020.00477
    Foot-and-mouth disease (FMD) is a devastating livestock disease caused by foot-and-mouth disease virus (FMDV). Outbreaks of this disease in a country always result in conspicuous economic losses to livestock industry and subsequently lead to serious socioeconomic damages due to the immediate imposition of trade embargo. Rapid and accurate diagnoses are imperative to control this infectious virus. In the current review, enzyme-linked immunosorbent assay (ELISA)-based methods used in FMD diagnosis are extensively reviewed, particularly the sandwich, liquid-phase blocking, and solid-phase competition ELISA. The differentiation of infected animals from vaccinated animals using ELISA-based methods is also highlighted, in which the role of 3ABC polyprotein as a marker is reviewed intensively. Recently, more studies are focusing on the molecular diagnostic methods, which detect the viral nucleic acids based on reverse transcription-polymerase chain reaction (RT-PCR) and RT-loop-mediated isothermal amplification (RT-LAMP). These methods are generally more sensitive because of their ability to amplify a minute amount of the viral nucleic acids. In this digital era, the RT-PCR and RT-LAMP are progressing toward the mobile versions, aiming for on-site FMDV diagnosis. Apart from RT-PCR and RT-LAMP, another diagnostic assay specifically designed for on-site diagnosis is the lateral flow immunochromatographic test strips. These test strips have some distinct advantages over other diagnostic methods, whereby the assay often does not require the aid of an external device, which greatly lowers the cost per test. In addition, the on-site diagnostic test can be easily performed by untrained personnel including farmers, and the results can be obtained in a few minutes. Lastly, the use of FMDV diagnostic assays for progressive control of the disease is also discussed critically.
  7. Yong CY, Yeap SK, Omar AR, Tan WS
    PeerJ, 2017;5:e3841.
    PMID: 28970971 DOI: 10.7717/peerj.3841
    Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
  8. Ong HK, Yong CY, Tan WS, Yeap SK, Omar AR, Razak MA, et al.
    Vaccines (Basel), 2019 08 19;7(3).
    PMID: 31430965 DOI: 10.3390/vaccines7030091
    Current seasonal influenza A virus (IAV) vaccines are strain-specific and require annual reconstitution to accommodate the viral mutations. Mismatches between the vaccines and circulating strains often lead to high morbidity. Hence, development of a universal influenza A vaccine targeting all IAV strains is urgently needed. In the present study, the protective efficacy and immune responses induced by the extracellular domain of Matrix 2 protein (M2e) displayed on the virus-like particles of Macrobrachium rosenbergii nodavirus (NvC-M2ex3) were investigated in BALB/c mice. NvC-M2ex3 was demonstrated to be highly immunogenic even in the absence of adjuvants. Higher anti-M2e antibody titers corresponded well with increased survival, reduced immunopathology, and morbidity of the infected BALB/c mice. The mice immunized with NvC-M2ex3 exhibited lower H1N1 and H3N2 virus replication in the respiratory tract and the vaccine activated the production of different antiviral cytokines when they were challenged with H1N1 and H3N2. Collectively, these results suggest that NvC-M2ex3 could be a potential universal influenza A vaccine.
  9. Yong CY, Sudirman R, Chew KM
    Sains Malaysiana, 2015;44(12):1661-1669.
    A scalable tracking human model was proposed for recognizing human jogging and walking activities. The model aims to detect and track a particular subject by using wearable sensor. Data collected are in accelerometer readings in three axes and gyroscope readings in three axes. The development of proposed human model is based on the moderating effects on human movements. Two moderators were proposed as the moderating factors of human motion and they are angular velocity and elevation angle. Linear regression is used to investigate the relationship among inputs, moderators and outputs of the model. The result of this study showed that the angular velocity and elevation angle moderators are affecting the relation of research output. Acceleration in x-axis (Ax) and angular velocity in y-axis (Gy) are the two main components in directing
    a motion. Classification between jogging and walking motions was done by measuring the magnitude of angular velocity and elevation angle. Jogging motion was classified and identified with larger angular velocity and elevation angle. The two proposed hypotheses were supported and proved by research output. The result is expected to be beneficial and able to assist researcher in investigating human motions.
  10. Ninyio NN, Ho KL, Yong CY, Chee HY, Hamid M, Ong HK, et al.
    Int J Mol Sci, 2021 Feb 15;22(4).
    PMID: 33672018 DOI: 10.3390/ijms22041922
    Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) 'a' determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (β)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.
  11. Aziz MNM, Hussin Y, Che Rahim NF, Nordin N, Mohamad NE, Yeap SK, et al.
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303982 DOI: 10.3390/molecules23010075
    Osteosarcoma is one of the primary malignant bone tumors that confer low survival rates for patients even with intensive regime treatments. Therefore, discovery of novel anti-osteosarcoma drugs derived from natural products that are not harmful to the normal cells remains crucial. Curcumin is one of the natural substances that have been extensively studied due to its anti-cancer properties and is pharmacologically safe considering its ubiquitous consumption for centuries. However, curcumin suffers from a poor circulating bioavailability, which has led to the development of a chemically synthesized curcuminoid analog, namely (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1). In this study, the cytotoxic effects of the curcumin analog DK1 was investigated in both U-2OS and MG-63 osteosarcoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was microscopically examined via acridine orange/propidium iodide (AO/PI) double staining. Flow cytometer analysis including Annexin V/Fluorescein isothiocyanate (FITC), cell cycle analysis and JC-1 were adapted to determine the mode of cell death. Subsequently in order to determine the mechanism of cell death, quantitative polymerase chain reaction (qPCR) and proteome profiling was carried out to measure the expression of several apoptotic-related genes and proteins. Results indicated that DK1 induced U-2 OS and MG-63 morphological changes and substantially reduced cell numbers through induction of apoptosis. Several apoptotic genes and proteins were steadily expressed after treatment with DK1; including caspase 3, caspase 9, and BAX, which indicated that apoptosis occurred through a mitochondria-dependent signaling pathway. In conclusion, DK1 could be considered as a potential candidate for an anti-osteosarcoma drug in the near future, contingent upon its ability to induce apoptosis in osteosarcoma cell lines.
  12. Chong ZX, Liew WPP, Ong HK, Yong CY, Shit CS, Ho WY, et al.
    Pathol Res Pract, 2021 Sep;225:153565.
    PMID: 34333398 DOI: 10.1016/j.prp.2021.153565
    Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.
  13. Hussin Y, Aziz MNM, Che Rahim NF, Yeap SK, Mohamad NE, Masarudin MJ, et al.
    Int J Mol Sci, 2018 Apr 11;19(4).
    PMID: 29641445 DOI: 10.3390/ijms19041151
    Extensive research has been done in the search for innovative treatments against colon adenocarcinomas; however, the incidence rate of patients remains a major cause of cancer-related deaths in Malaysia. Natural bioactive compounds such as curcumin have been substantially studied as an alternative to anticancer drug therapies and have been surmised as a potent agent but, nevertheless, remain deficient due to its poor cellular uptake. Therefore, efforts now have shifted toward mimicking curcumin to synthesize novel compounds sharing similar effects. A synthetic analog, (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-ene-1-one (DK1), was recently synthesized and reported to confer improved bioavailability and selectivity toward human breast cancer cells. This study, therefore, aims to assess the anticancer mechanism of DK1 in relation to the induction of in vitro cell death in selected human colon cancer cell lines. Using the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, the cytotoxicity of DK1 towards HT29 and SW620 cell lines were investigated. Acridine orange/propidium iodide (AO/PI) dual-staining assay and flow cytometry analyses (cell cycle analysis, Annexin/V-FITC and JC-1 assays) were incorporated to determine the mode of cell death. To further determine the mechanism of cell death, quantitative real-time polymerase chain reaction (qRT-PCR) and proteome profiling were conducted. Results from this study suggest that DK1 induced changes in cell morphology, leading to a decrease in cell viability and subsequent induction of apoptosis. DK1 treatment inhibited cell viability and proliferation 48 h post treatment with IC50 values of 7.5 ± 1.6 µM for HT29 cells and 14.5 ± 4.3 µM for SW620 cells, causing cell cycle arrest with increased accumulation of cell populations at the sub-G₀/G₁phaseof 74% and 23%, respectively. Flow cytometry analyses showed that DK1 treatment in cancer cells induced apoptosis, as indicated by DNA fragmentation and depolarization of the mitochondrial membrane. qRT-PCR results show significant upregulation in the expression of caspase-9 in both HT29 and SW620 cell lines, further supporting that cell death induction by DK1 is via an intrinsic pathway. These outcomes, therefore, demonstrate DK1 as a potential anticancer agent for colon adenocarcinoma due to its anti-apoptotic attributes.
  14. Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY
    Toxicology, 2023 Aug 15;495:153596.
    PMID: 37480978 DOI: 10.1016/j.tox.2023.153596
    Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
  15. Lehl HK, Ong SA, Ho LN, Wong YS, Saad FNM, Oon YL, et al.
    Int J Phytoremediation, 2017 Aug 03;19(8):725-731.
    PMID: 28448169 DOI: 10.1080/15226514.2017.1284748
    The objective of this study is to determine the reduction efficiency of Chemical Oxygen Demand (COD) as well as the removal of color and Amaranth dye metabolites by the Aerobic-anaerobic Baffled Constructed Wetland Reactor (ABCW). The ABCW reactor was planted with common reed (Phragmite australis) where the hydraulic retention time (HRT) was set to 1 day and was fed with synthetic wastewater with the addition of Amaranth dye. Supplementary aeration was supplied in designated compartments of the ABCW reactor to control the aerobic and anaerobic zones. After Amaranth dye addition the COD reduction efficiency dropped from 98 to 91% while the color removal efficiency was 100%. Degradation of azo bond in Amaranth dye is shown by the UV-Vis spectrum analysis which demonstrates partial degradation of Amaranth dye metabolites. The performance of the baffled unit is due to the longer pathway as there is the up-flow and down-flow condition sequentially, thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones.
  16. Yong CY, Liew WPP, Ong HK, Poh CL
    Biotechnol Prog, 2022 Nov;38(6):e3292.
    PMID: 35932092 DOI: 10.1002/btpr.3292
    Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the most impactful coronaviruses in human history, especially the latter, which brings revolutionary changes to human vaccinology. Due to its high infectivity, the virus spreads rapidly throughout the world and was declared a pandemic in March 2020. A vaccine would normally take more than 10 years to be developed. As such, there is no vaccine available for SARS-CoV and MERS-CoV. Currently, 10 vaccines have been approved for emergency use by World Health Organization (WHO) against SARS-CoV-2. Virus-like particle (VLP)s are nanoparticles resembling the native virus but devoid of the viral genome. Due to their self-adjuvanting properties, VLPs have been explored extensively for vaccine development. However, none of the approved vaccines against SARS-CoV-2 was based on VLP and only 4% of the vaccine candidates in clinical trials were based on VLPs. In the current review, we focused on discussing the major advances in the development of VLP-based vaccine candidates against the SARS-CoV, MERS-CoV, and SARS-CoV-2, including those in clinical and pre-clinical studies, to give a comprehensive overview of the VLP-based vaccines against the coronaviruses.
  17. Zangrillo A, Lomivorotov VV, Pasyuga VV, Belletti A, Gazivoda G, Monaco F, et al.
    PMID: 35168907 DOI: 10.1053/j.jvca.2022.01.001
    OBJECTIVE: To investigate the effect of volatile anesthetics on the rates of postoperative myocardial infarction (MI) and cardiac death after coronary artery bypass graft (CABG).

    DESIGN: A post hoc analysis of a randomized trial.

    SETTING: Cardiac surgical operating rooms.

    PARTICIPANTS: Patients undergoing elective, isolated CABG.

    INTERVENTIONS: Patients were randomized to receive a volatile anesthetic (desflurane, isoflurane, or sevoflurane) or total intravenous anesthesia (TIVA). The primary outcome was hemodynamically relevant MI (MI requiring high-dose inotropic support or prolonged intensive care unit stay) occurring within 48 hours from surgery. The secondary outcome was 1-year death due to cardiac causes.

    MEASUREMENTS AND MAIN RESULTS: A total of 5,400 patients were enrolled between April 2014 and September 2017 (2,709 patients randomized to the volatile anesthetics group and 2,691 to TIVA). The mean age was 62 ± 8.4 years, and the median baseline ejection fraction was 57% (50-67), without differences between the 2 groups. Patients in the volatile group had a lower incidence of MI with hemodynamic complications both in the per-protocol (14 of 2,530 [0.6%] v 27 of 2,501 [1.1%] in the TIVA group; p = 0.038) and as-treated analyses (16 of 2,708 [0.6%] v 29 of 2,617 [1.1%] in the TIVA group; p = 0.039), but not in the intention-to-treat analysis (17 of 2,663 [0.6%] v 28 of 2,667 [1.0%] in the TIVA group; p = 0.10). Overall, deaths due to cardiac causes were lower in the volatile group (23 of 2,685 [0.9%] v 40 of 2,668 [1.5%] than in the TIVA group; p = 0.03).

    CONCLUSIONS: An anesthetic regimen, including volatile agents, may be associated with a lower rate of postoperative MI with hemodynamic complication in patients undergoing CABG. Furthermore, it may reduce long-term cardiac mortality.

  18. Tang HC, Sieo CC, Abdullah N, Chong CW, Gan HM, Mohd Asrore MS, et al.
    J Anim Physiol Anim Nutr (Berl), 2020 Jan;104(1):116-125.
    PMID: 31556187 DOI: 10.1111/jpn.13208
    Inclusion of phytase in animal feedstuff is a common practice to enhance nutrients availability. However, little is known about the effects of phytase supplementation on the microbial ecology of the gastrointestinal tract. In this study, freeze-dried Mitsuokella jalaludinii phytase (MJ) was evaluated in a feeding trial with broilers fed a low available phosphorus (aP) diet. A total of 180 male broiler chicks (day-old Cobb) were assigned into three dietary treatments: Control fed with 0.4% (w/w) of available phosphorus (aP); Group T1 fed low aP [0.2% (w/w)] supplemented with MJ; and T2 fed low aP and deactivated MJ. The source of readily available P, dicalcium phosphate (DCP), was removed from low aP diet, whereby additional limestone was provided to replace the amount of Ca normally found in DCP. For each treatment, 4 replicate pens were used, where each pen consisted of 15 animals. The animals' energy intake and caecal bacterial community were monitored weekly for up to 3 weeks. The apparent metabolizable energy (AME) and apparent digestibility of dry matter (ADDM) of broilers fed with different diets were determined. In addition, the caecal microbial diversities of broilers were assessed using high-throughput next-generation sequencing targeting the V3-V4 region of bacterial 16S rRNA. The results showed that broilers fed with T1 diet have better feed conversion ratio (FCR) when compared to the Control (p 
  19. Abd Aziz N, Chue MC, Yong CY, Hassan Y, Awaisu A, Hassan J, et al.
    Int J Clin Pharm, 2011 Apr;33(2):150-4.
    PMID: 21744187 DOI: 10.1007/s11096-011-9480-7
    OBJECTIVE: To compare the efficacy of dexmedetomidine versus morphine as a sedative/analgesic among post-operative cardiac surgery patients.

    METHOD: A randomized controlled open-label study was performed at the cardiothoracic intensive care unit of Penang Hospital, Malaysia. A total of 28 patients who underwent cardiac surgeries were randomly assigned to receive either dexmedetomidine or morphine. Both groups were similar in terms of preoperative baseline characteristics. Efficacy measures included sedation scores and pain intensity and requirements for additional sedative/analgesic. Mean heart rate and arterial blood pressure were used as safety measures. Other measures were additional inotropes, extubation time and other concurrent medications.

    RESULTS: The mean dose of dexmedetomidine infused was 0.12 [SD 0.03] μg kg⁻¹ h⁻¹, while that of morphine was 13.2 [SD 5.84] μg kg⁻¹ h⁻¹. Dexmedetomidine group showed more benefits in sedation and pain levels, additional sedative/analgesic requirements, and extubation time. No significant differences between the two groups for the outcome measures, except heart rate, which was significantly lower in the dexmedetomidine group.

    CONCLUSION: This preliminary study suggests that dexmedetomidine was at least comparable to morphine in terms of efficacy and safety among cardiac surgery patients. Further studies with larger samples are recommended in order to determine the significant effects of the outcome measures.

  20. Abd Razak N, Yeap SK, Alitheen NB, Ho WY, Yong CY, Tan SW, et al.
    Integr Cancer Ther, 2020 8 25;19:1534735420935625.
    PMID: 32830560 DOI: 10.1177/1534735420935625
    Eupatorin is a polymethoxy flavone extracted from Orthosiphon stamineus and was reported to exhibit cytotoxic effects on several cancer cell lines. However, its effect as an anti-breast cancer agent in vivo has yet to be determined. This study aims to elucidate the potential of eupatorin as an anti-breast cancer agent in vivo using 4T1 challenged BALB/c mice model. In this article, BALB/c mice (20-22 g) challenged with 4T1 cells were treated with 5 mg/kg or 20 mg/kg eupatorin, while the untreated and healthy mice were fed with olive oil (vehicle) via oral gavage. After 28 days of experiment, the mice were sacrificed and blood was collected for serum cytokine assay, while tumors were harvested to extract RNA and protein for gene expression assay and hematoxylin-eosin staining. Organs such as spleen and lung were harvested for immune suppression and clonogenic assay, respectively. Eupatorin (20 mg/kg) was effective in delaying the tumor development and reducing metastasis to the lung compared with the untreated mice. Eupatorin (20 mg/kg) also enhanced the immunity as the population of NK1.1+ and CD8+ in the splenocytes and the serum interferon-γ were increased. Concurrently, eupatorin treatment also has downregulated the expression of pro-inflammatory and metastatic related genes (IL-1β. MMP9, TNF-α, and NF-κB). Thus, this study demonstrated that eupatorin at the highest dosage of 20 mg/kg body weight was effective in delaying the 4T1-induced breast tumor growth in the animal model.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links