Displaying publications 1 - 20 of 82 in total

Abstract:
Sort:
  1. Razak MR, Yee WS, Yusoff FM, Balia Yusof ZN, Aris AZ
    Environ Res, 2024 May 02.
    PMID: 38704014 DOI: 10.1016/j.envres.2024.119045
    Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilization of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.
  2. Nkem BM, Halimoon N, Yusoff FM, Johari WLW
    J Environ Health Sci Eng, 2022 Dec;20(2):729-747.
    PMID: 36406595 DOI: 10.1007/s40201-022-00812-3
    A consortium of bacteria capable of decomposing oily hydrocarbons was isolated from tarballs on the beaches of Terengganu, Malaysia, and classified as Pseudomonas stutzeri, Cellulosimicrobium cellulans, Acinetobacter baumannii and Pseudomonas balearica. The Taguchi design was used to optimize the biodegradation of diesel using these bacteria as a consortium. The highest biodegradation of diesel-oil in the experimental tests was 93.6%, and the individual n-alkanes decomposed 87.6-97.6% over 30 days. Optimal settings were inoculum size of 2.5 mL (1.248 OD600nm); 12% (v/v) the initial diesel-oil in a minimal salt medium of pH 7.0, 30.0 gL-1 NaCl and 2.0 gL-1 NH4NO3 concentration, incubated at 42 °C temperature and 150 rpm agitation speed. Parameters significantly improved diesel-oil removal by consortium as shown by the model determination coefficient (R2 = 90.89%; P 
  3. Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA
    Plants (Basel), 2021 Nov 01;10(11).
    PMID: 34834721 DOI: 10.3390/plants10112358
    Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
  4. Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, et al.
    Front Bioeng Biotechnol, 2021;9:568776.
    PMID: 33585428 DOI: 10.3389/fbioe.2021.568776
    Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (F
    v
    /F
    m
    ), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31-0.87 gL-1) for 6 days under a light source with an intensity of 300 μmol photons m-2 s-1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (


    NH


    4


    +


    -N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of


    NH


    4


    +


    -N. Chlorophyll a content in T. tetrathele grown in all of the different


    NH


    4


    +


    -N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of


    NH


    4


    +


    -N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
  5. Looi LJ, Aris AZ, Haris H, Yusoff FM, Hashim Z
    Chemosphere, 2016 Jun;152:265-73.
    PMID: 26974481 DOI: 10.1016/j.chemosphere.2016.02.126
    The present study examined the concentrations of mercury (Hg), methylmercury (MeHg), and selenium (Se) in the multiple tissues of the Plotosus canius and Periophthalmodon schlosseri collected from the Strait of Malacca. The mean value in mg kg(-1) of Hg (P. canius: 0.34 ± 0.19; P. schlosseri: 0.32 ± 0.18) and MeHg in muscle (P. canius: 0.14 ± 0.11; P. schlosseri: 0.17 ± 0.11) were below the Codex general standard for contaminants and toxins in food and feed (CODEX STAN 193-1995), the Malaysian Food Regulation 1985 and the Japan Food Sanitation Law. For P. canius, the liver contained the highest concentrations of Hg (0.48 ± 0.07 mg kg(-1)) and MeHg (0.21 ± 0.00 mg kg(-1)), whereas for P. schlosseri, the gill contained the highest concentrations of Hg (0.36 ± 0.06 mg kg(-1)) and MeHg (0.21 ± 0.05 mg kg(-1)). The highest concentration of (80)Se (mg kg(-1)) was observed in the liver of P. canius (20.34 ± 5.68) and in the gastrointestinal tract (3.18 ± 0.42) of P. schlosseri. The selenium:mercury (Se:Hg) molar ratios were above 1 and the positive selenium health benefit value (HBVSe) suggesting the possible protective effects of Se against Hg toxicity. The estimate weekly intakes (EWIs) in μg kg(-1) body weight (bw) week(-1) of Hg (P. canius: 0.27; P. schlosseri: 0.15) and MeHg (P. canius: 0.11; P. schlosseri: 0.08) were found to be lower than the provisional tolerable weekly intake established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Based on the calculated EWIs, P. canius, and P. schlosseri were found to be unlikely to cause mercury toxicity in human consumption.
  6. Lo TS, Lin YH, Yusoff FM, Chu HC, Hsieh WC, Uy-Patrimonio MC
    Sci Rep, 2016 12 19;6:38960.
    PMID: 27991501 DOI: 10.1038/srep38960
    Our aim is to study the inflammatory response towards the collagen-coated and non-coated polypropylene meshes in rats and the urodynamic investigation post-operatively. Forty-two female Sprague Dawley were divided into 7 groups of 6 rats; Control, Day 7 and 30 for Sham, Avaulta Plus (MPC), Perigee (MP). UDS were taken at days 7 and 30. Mesh with the vagina and bladder wall was removed and sent for immunohistochemical examination. Results showed intense inflammatory reaction on day 7 in the study groups which decreased on day 30. IL-1, TNF-α, MMP-2 and CD31 were observed to decrease from day 7 to day 30. NGF was almost normal on day 30 in all groups. UDS showed no difference in voiding pressure. Both Study and Sham groups had shorter voiding interval (VI) on day 7 but significantly lower in MPC. VI had significantly increased on day 30 in all groups. Voided volume was significantly lower in the mesh groups even when an increase was seen on day 30. In conclusion, the higher levels of IL-1, TNF-α and MMP-2 in collagen-coated polypropylene mesh imply greater inflammation than the non-coated polypropylene mesh. Mesh implantation can lead to shorter voiding interval and smaller bladder capacity.
  7. Samat NA, Yusoff FM, Rasdi NW, Karim M
    Antibiotics (Basel), 2021 Aug 16;10(8).
    PMID: 34439039 DOI: 10.3390/antibiotics10080989
    The administration of probiotics via live feeds, such as Artemia and rotifers, has gained significant attention. Moreover, indiscriminate use of antibiotics in conventional aquaculture practices in order to prevent or control disease outbreaks has resulted in the occurrence of residues and antimicrobial resistance. Thus, the application of eco-friendly feed additives, such as probiotics, as a safer alternative has received increasing attention in recent years. However, only minimal information on the administration of probiotics via freshwater cladoceran Moina micrura is available despite being commonly used for larval and post-larval feeding of freshwater crustaceans and fish. Thus, this study aimed to evaluate the application of Bacillus pocheonensis strain S2 administered via M. micrura to red hybrid tilapia (Oreochromis spp.) larvae. Bacillus pocheonensis that has been previously isolated from Spirulina sp. was subjected to preliminary in vitro evaluation of antagonistic properties. The agar well-diffusion assay revealed that this probiont could inhibit the growth of Streptococcus agalactiae and Aeromonas hydrophila. The size of inhibition zones ranged from 8.8 ± 0.2 to 18.2 ± 0.4 mm. Moina micrura was later used as a biological model in preliminary in vivo bacterial challenge assays to evaluate the efficacy of B. pocheonensis in protecting the host from diseases. Moina micrura was pre-enriched with B. pocheonensis at 104 and 106 CFU mL-1 before S. agalactiae and A. hydrophila were introduced into the culture. The study revealed that B. pocheonensis at 104 CFU mL-1 was able to significantly enhance the survival of M. micrura after being challenged with both pathogens (63 ± 3%) in comparison to the control group. The relative percentage survival (RPS) of M. micrura was highest (p < 0.05) when treated with B. pocheonensis at both concentrations 104 and 106 CFU mL-1 (38.33) after being challenged against S. agalactiae. To assess the efficacy of B. pocheonensis in protecting red hybrid tilapia against streptococcosis, the larvae were fed with either unenriched (control) Moina or probiont-enriched Moina daily for 10 days. A significantly (p < 0.05) higher survival rate (77 ± 3%) was observed in larvae fed with probiont-enriched M. micrura compared to other treatments, and the RPS was recorded at 62.90. In addition, the S. agalactiae load was suppressed in larvae fed probiont-enriched M. micrura (6.84±0.39 CFU mL-1) in comparison to the control group (7.78±0.09 CFU mL-1), indicating that the probiont might have contributed to the improvement of tilapia health and survival. This study illustrated that M. micrura was suitable to be used as a vector for probiotics in freshwater fish larvae as an alternative to hazardous antibiotics for disease control.
  8. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Chemosphere, 2021 Feb;264(Pt 1):128488.
    PMID: 33045559 DOI: 10.1016/j.chemosphere.2020.128488
    Contamination of endocrine disrupting compounds (EDCs) in tap water is an emerging global issue, and there are abundant influencing factors that have an ambivalent effect on their transportation and fate. Different housing types vary in terms of water distribution system operation and design, water consumption choices, and other hydraulic factors, which potentially affect the dynamics, loadings, and partitioning of pollutants in tap water. Thus, this study analyzed 18 multiclass EDCs in tap water from different housing types (i.e., landed and high-rise) and the associated health risks. Sample analyses revealed the presence of 16 EDCs, namely hormones (5), pharmaceuticals (8), a pesticide (1), and plasticizers (2) in tap water, with the prevalent occurrence of bisphenol A up to 66.40 ng/L in high-rise housing. The presence of caffeine and sulfamethoxazole distribution in tap water was significantly different between landed and high-rise housings (t(152) = -2.298, p = 0.023 and t(109) = 2.135, p = 0.035). Moreover, the salinity and conductivity of tap water in high-rise housings were significantly higher compared to those in landed housings (t(122) = 2.411, p = 0.017 and t(94) = 2.997, p = 0.003, respectively). Furthermore, there were no potential health risks of EDCs (risk quotient 
  9. Medipally SR, Yusoff FM, Sharifhuddin N, Shariff M
    J Environ Biol, 2016 07;37(4 Spec No):829-38.
    PMID: 28779745
    Asian arowana, Scleropages formosus is a highly valued aquarium fish in the world, particularly in Asian countries, and has been listed as one of the most highly endangered species. This is a freshwater, carnivorous, fairly large mouth breeding fish belonging to the family Osteoglossidae. Arowana can be found in different colour varieties such as green, red, silver and golden. Among these varieties, Malaysian golden is the most valuable fish and is endemic to the Krian riverine system, Malaysia. However, overexploitation, habitat change and pollution have caused a serious decline of this arowana variety. Recently, arowana aquaculture industry is expanding rapidly in Southeast Asian countries. However, difficulties in an accurate differentiation of sex and strains, causing imbalanced stocking ratios for optimum spawning, remain major obstacles in maximizing arowana production. In addition, problems in sustainable water sources of suitable quality and prevention of diseases need to be addressed. Recirculating aquaculture system (RAS) and bioremediation are two possible technologies that could be used to minimize pollution and ensure adequate high-quality water for arowana culture. In addition, the application of appropriate molecular markers for sex and strain identification is also an important strategy required for the improvement of captive breeding. This review discusses several issues such as the importance of arowana as an aquarium fish, its market demand, current problems in the arowana aquaculture industry and the possible technologies to enhance reproductive capacity and increase culture production. ?
  10. Arshad A, Amani AA, Amin SMN, Yusoff FM
    J Environ Biol, 2016 07;37(4 Spec No):709-13.
    PMID: 28779730
    Parapenaeopsis sculptilis (Heller, 1862) locally referred to as ?udang kulit keras? in Malaysia has profound biological, ecological, aquacultural and conservational significance. The reproductive biology of this important penaeid from the coastal waters of Perak, Peninsular Malaysia, was studied during the period between February 2012 to January 2013. Females outnumbered males with a sex ratio of M: F= 1:3 (P < 0.05). Four maturity stages of female gonads viz., immature, maturing, mature and spent stages were distinguished. The first stage of sexual maturity was attained at a length of 9.3 cm, and female P. sculptilis showed a peak gonadosomatic index during the month of April, August and October, indicating that P. sculptilis potentially breeds throughout the year. The findings of this study would greatly contribute towards the understanding of gonadal maturation, spawning season and breeding biology, which could be important for the effective population management of this prawn species.
  11. Tahir D, Shariff M, Syukri F, Yusoff FM
    Vet World, 2018 Mar;11(3):327-331.
    PMID: 29657425 DOI: 10.14202/vetworld.2018.327-331
    Background and Aim: Brown-marbled grouper Epinephelus fuscoguttatus is a premium marine food fish with high demand in Asia. In fish, stress due to environmental changes such as fluctuations in the salinity can result in increased cortisol level. Stress in fish increases susceptibility to diseases ultimately resulting in death. Therefore, the aim of this study was to investigate the salinity tolerance of E. fuscoguttatus and their survival in lower salinities.

    Materials and Methods: In this study, grouper juveniles (92.43±standard error of the mean 0.51 mm) maintained in 31 ppt seawater were transferred into five tanks with seawater diluted to 25, 20, 15, 10, and 5 ppt. The salinity of the control group was not changed and was maintained at 31 ppt. Serum cortisol was measured using ELISA at 0, 30, 60, and 120 min after the fish were transferred to the different concentrations of salinity.

    Results: The survival percentage was recorded for 14 days following the transfer and the results revealed that serum cortisol of fish in a high change in salinity (15, 10, and 5 ppt) was significantly higher than the control group immediately after exposure. At the high salinity change, the cortisol levels gradually decrease at 30 min and 60 min, until no difference in cortisol concentration was observed at 120 min. No mortality was observed in fish exposed to low salinity change (25 and 20 ppt) while in higher salinity change (5 ppt), the survival percentage was 50%.

    Conclusion: The study revealed that the serum cortisol concentration was high initially and continues to decrease to resting cortisol level at 120 min indicating that cortisol hormone is released following acute stress as a primary response in grouper juveniles.

  12. Balqis ARS, Yusoff FM, Arshad A, Nishikawa J
    J Environ Biol, 2016 Jul;37(4 Spec No):685-95.
    PMID: 28779727
    Seasonal variations of zooplankton community in terms of biomass and size-fractionated densities were studied in a tropical Sangga Kechil river, Matang, Perak from June 2010 to April 2011. Zooplankton and jellyfish (hydromedusae, siphonophores and ctenophores) samples were collected bimonthly from four sampling stations by horizontal towing of a 140-?m plankton net and 500 ?m bongo net, respectively. A total of 12 zooplankton groups consisting of six groups each of mesozooplankon (0.2 mm-2.0 mm) and macrozooplankton (2.0 mm-20.0 cm) were recorded. The total zooplankton density (12375?3339 ind m(-3)) and biomass (35.32?14.56 mg m(-3)) were highest during the northeast (NE) monsoon and southwest (SW) monsoon, respectively, indicating the presence of bigger individuals in the latter season. Mesozooplankton predominated (94%) over the macrozooplankton (6%) during all the seasons, and copepods contributed 84% of the total mesozooplankton abundance. Macrozooplankton was dominated by appendicularians during most of the seasons (43%-97%), except during the NE monsoon (December) when chaetognaths became the most abundant (89% of the total macrozooplankton). BIO-ENV analysis showed that total zooplankton density was correlated with turbidity, total nitrogen and total phosphorus, which in turn was positively correlated to chlorophyll a. Cluster analysis of the zooplankton community showed no significant temporal difference between the SW and NE monsoon season during the study period (> 90% similarity). The present study revealed that the zooplankton community in the tropical mangrove estuary in the Straits of Malacca was dominated by mesoplankton, especially copepods.
  13. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Environ Geochem Health, 2019 Feb;41(1):211-223.
    PMID: 30051257 DOI: 10.1007/s10653-018-0157-1
    The concentration profile, distribution and risk assessment of pharmaceutically active compounds (PhACs) in the coastal surface water from the Klang River estuary were measured. Surface coastal water samples were extracted using offline solid phase, applying polymeric C18 cartridges as extraction sorbent and measuring with liquid chromatography mass spectrometry-mass spectrometry (LC MS-MS) technique. Extraction method was optimized for its recovery, sensitivity and linearity. Excellent recoveries were obtained from the optimized method with percentage of recoveries ranging from 73 to 126%. The optimized analytical method achieved good sensitivity with limit of detection ranging from 0.05 to 0.15 ng L-1, while linearity of targeted compounds in the LC MS-MS system was more than 0.990. The results showed that amoxicillin has the highest concentration (102.31 ng L-1) followed by diclofenac (10.80 ng L-1) and primidone (7.74 ng L-1). The percentage of contribution (% of total concentration) for the targeted PhACs is in the following order; amoxicillin (92.90%) > diclofenac (3.95%) > primidone (1.23%) > dexamethasone (0.75%) > testosterone (0.70%) > sulfamethoxazole (0.33%) > progesterone (0.14%). Environmental risk assessment calculated based on deterministic approach (the RQ method), showed no present risk from the presence of PhACs in the coastal water of Klang River estuary. Nonetheless, this baseline assessment can be used for better understanding on PhACs pollution profile and distribution in the tropical coastal and estuarine ecosystem as well as for future comparative studies.
  14. Razak MR, Aris AZ, Yusoff FM, Yusof ZNB, Abidin AAZ, Kim SD, et al.
    Environ Geochem Health, 2023 Jun;45(6):3567-3583.
    PMID: 36450975 DOI: 10.1007/s10653-022-01442-2
    Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.
  15. Yusoff FM, Kajikawa M, Matsui S, Hashimoto H, Kishimoto S, Maruhashi T, et al.
    Sci Rep, 2019 05 22;9(1):7711.
    PMID: 31118440 DOI: 10.1038/s41598-019-44176-5
    Critical limb ischemia (CLI) is associated with a high risk of limb amputation. It has been shown that cell therapy is safe and has beneficial effects on ischemic clinical symptoms in patients with CLI. The aim of this study was to further investigate the outcomes of intramuscular injection of autologous bone-marrow mononuclear cells (BM-MNCs) in a long-term follow-up period in atherosclerotic peripheral arterial disease (PAD) patients who have no optional therapy. This study was a retrospective and observational study that was carried out to evaluate long-term clinical outcomes in 42 lower limbs of 30 patients with atherosclerotic PAD who underwent BM-MNC implantation. The median follow-up period was 9.25 (range, 6-16) years. The overall amputation-free rates were 73.0% at 5 years after BM-MNC implantation and 70.4% at 10 years in patients with atherosclerotic PAD. The overall amputation-free rates at 5 years and at 10 years after implantation of BM-MNCs were significantly higher in atherosclerotic PAD patients than in internal controls and historical controls. There were no significant differences in amputation rates between the internal control group and historical control group. The rate of overall survival was not significantly different between the BM-MNC implantation group and the historical control group. Implantation of autologous BM-MNCs is feasible for a long-term follow-up period in patients with CLI who have no optional therapy.
  16. Kwan PP, Banerjee S, Shariff M, Yusoff FM
    Vet World, 2019 Sep;12(9):1416-1421.
    PMID: 31749575 DOI: 10.14202/vetworld.2019.1416-1421
    Background and Aim: Malachite green (MG) is an effective antiparasitic and antifungal chemical for treatment of fish. However, MG is reported to be a potential carcinogen. Yet, it is widely used in aquaculture despite its prohibition for use in food-producing animals by the EU and USFDA. The present study quantified MG residues and evaluated the oxidative stress in red tilapia when exposed to subacute and sublethal concentrations of MG.

    Materials and Methods: Red tilapia exposed to subacute (0.105 mg/L for 20 days) and sublethal (0.053 mg/L for 60 days) concentrations were evaluated for total plasma protein, total immunoglobulin, nitroblue tetrazolium activity, malondialdehyde, reduced glutathione (GSH), and catalase (CAT) activity levels. The residues of MG and leuco-MG (LMG) were also quantified in the fish muscles using liquid chromatography-tandem mass spectrometry.

    Results: Fish exposed to subacute concentration showed higher CAT on day 10 in the liver and days 5 and 15 in the spleen, whereas in fish exposed to the sublethal concentration, higher levels of GSH were observed on day 1 in the kidney and day 50 in the spleen. Fish muscle was able to accumulate the sum of MG and LMG of 108.04 µg/kg for subacute (day 20) and 82.68 µg/kg for sublethal (day 60).

    Conclusion: This study showed that red tilapia was able to adapt to the stress caused by exposure to MG at sublethal concentration.

  17. Yusoff FM, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, et al.
    Sci Rep, 2020 11 16;10(1):19891.
    PMID: 33199760 DOI: 10.1038/s41598-020-76886-6
    Cell therapy using intramuscular injections of autologous bone-marrow mononuclear cells (BM-MNCs) improves clinical symptoms and can prevent limb amputation in atherosclerotic peripheral arterial disease (PAD) patients with critical limb ischemia (CLI). The purpose of this study was to evaluate the effects of the number of implanted BM-MNCs on clinical outcomes in atherosclerotic PAD patients with CLI who underwent cell therapy. This study was a retrospective observational study with median follow-up period of 13.5 years (range, 6.8-15.5 years) from BM-MNC implantation procedure. The mean number of implanted cells was 1.2 ± 0.7 × 109 per limb. There was no significant difference in number of BM-MNCs implanted between the no major amputation group and major amputation group (1.1 ± 0.7 × 109 vs. 1.5 ± 0.8 × 109 per limb, P = 0.138). There was also no significant difference in number of BM-MNCs implanted between the no death group and death group (1.5 ± 0.9 × 109 vs. 1.8 ± 0.8 × 109 per patient, P = 0.404). Differences in the number of BM-MNCs (mean number, 1.2 ± 0.7 × 109 per limb) for cell therapy did not alter the major amputation-free survival rate or mortality rate in atherosclerotic PAD patients with CLI. A large number of BM-MNCs will not improve limb salvage outcome or mortality.
  18. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Ecotoxicol Environ Saf, 2024 Jan 15;270:115830.
    PMID: 38141339 DOI: 10.1016/j.ecoenv.2023.115830
    Humans are exposed to environmental risks owing to the broad usage of endocrine disrupting compounds (EDCs). However, the subjective evaluation of risk levels and characteristics, as well as the variation in risk processing, have not been thoroughly examined. The objective was to understand the public's perception of the risk associated with human exposure to environmental EDCs and identify any variations in risk perception. In this pioneering study conducted within the distinctive social and cultural context of Malaysia, a developing nation, a quantitative analysis approach was employed to assess the subjective evaluation of risk levels and characteristics among the public while developing a risk perception model. Data gathered from surveys and questionnaires were analyzed to gather information on the public's perception of environmental and health issues pertaining to pesticides, hormones, plastics, medicines, and cosmetics. The analysis revealed that the majority of the public assessed the level of human exposure to environmental risks based on experiential processing, which was influenced by cognitive and affective variables. Interestingly, a higher proportion of individuals in the community had a low risk perception of environmental EDCs, surpassing the overall risk perception by 19.3%. Furthermore, the public showed significant awareness of environmental and health issues related to pesticides, hormones, and plastics but had a lesser inclination to acknowledge the vulnerability of humans to risks associated with medicines and cosmetics. These findings suggest that the public is likely to be exposed to environmental EDCs based on their current perceived risks, and that sociopsychological factors play a significant role in shaping perceptions and judgments. This understanding can inform the development of targeted risk management strategies and interventions to mitigate the potential harm caused by environmental EDCs.
  19. Lo TS, Shailaja N, Hsieh WC, Uy-Patrimonio MC, Yusoff FM, Ibrahim R
    Int Urogynecol J, 2017 Apr;28(4):575-582.
    PMID: 27647467 DOI: 10.1007/s00192-016-3144-z
    INTRODUCTION AND HYPOTHESIS: The objective of this study was to identify the predictors of postoperative voiding dysfunction in women following extensive vaginal pelvic reconstructive surgery.

    METHODS: We enrolled 1,425 women who had pelvic organ prolapse of POP-Q stage III or IV and had undergone vaginal pelvic reconstructive surgery with or without transvaginal mesh insertion from January 2006 to December 2014. All subjects were required to complete a 72-h voiding diary, and the IIQ-7, UDI-6, POPDI-6 and PISQ-12 questionnaires. Urodynamic study was performed preoperatively and postoperatively.

    RESULTS: Of the 1,425 women, 54 were excluded due to incomplete data, and 1,017 of the remaining 1,371 (74.2 %) had transvaginal mesh surgery and 247 (18 %) had concurrent midurethral sling insertion. Of 380 women (27.7 %) with preoperative voiding dysfunction, 37 (9.7 %) continued to have voiding dysfunction postoperatively. Of the remaining 991 women (72.3 %) with normal preoperative voiding function, 11 (1.1 %) developed de novo voiding dysfunction postoperatively. The overall incidence of postoperative voiding dysfunction was 3.5 % (48/1,371). Those with concurrent midurethral sling insertion were at higher risk of developing voiding dysfunction postoperatively (OR 3.12, 95 % CI 1.79 - 5.46, p 

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links