Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Abioye KJ, Harun NY, Sufian S, Yusuf M, Jagaba AH, Waqas S, et al.
    Environ Res, 2024 Apr 01;246:118027.
    PMID: 38159670 DOI: 10.1016/j.envres.2023.118027
    The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.
  2. Zubir MA, Kamyab H, Vasseghian Y, Hashim H, Zhi OM, Abdullah SR, et al.
    Environ Res, 2024 Mar 11;251(Pt 2):118617.
    PMID: 38467362 DOI: 10.1016/j.envres.2024.118617
    This study aims to improve the quality of fuel with high calorific value namely Sfuel - a commercial high-quality refuse-derived fuel (RDF) from hazardous waste via modifying the process design and operating parameters of thermal conversion process. The study analyses key parameters of RDF quality, such as calorific value and heavy metal content, before and after process modifications based on the combination of experimental and simulation using Aspen Plus. In this study, the temperature and pressure of the simulation system are varied from 100 to 700 °C and from 1 to 5 bar, respectively. Findings indicate that there are a total of eleven heavy metals and 179 volatile compounds in the "Sfuels". The quality of the targeted product is greatly improved by the metal evaporation at high temperatures and pressures. However, the calorific value of RDF significantly decreases at 700 °C due to a large amount of the carbon content being evaporated. Although the carbon content at high temperatures is significantly lost, the heat from the vapour stream reactor outlet, which is reused to preheat the nitrogen gas stream supplied to the system, reduces energy consumption while improving the thermal conversion efficiency of the system. Besides, low pressure along with high temperature are not the optimal conditions for quality Sfuels improvement by thermal conversion. Results also indicate that electric heating is more economically efficient than natural gas heating.
  3. Hussain A, Maitra J, Saifi A, Ahmed S, Ahmed J, Shrestha NK, et al.
    Environ Res, 2024 Mar 01;244:117952.
    PMID: 38113992 DOI: 10.1016/j.envres.2023.117952
    In developing countries like India, an economically viable and ecologically approachable strategy is required to safeguard the drinking water. Excessive fluoride intake through drinking water can lead to dental fluorosis, skeletal fluorosis, or both. The present study has been under with an objective to investigate the feasibility of using cellulose derived from coconut fiber as an adsorbent under varying pH conditions for fluoride elimination from water. The assessment of equilibrium concentration of metal ions using adsorption isotherms is an integral part of the study. This present finding indicates the considerable effect of variation of adsorbent dosages on the fluoride removal efficiency under constant temperature conditions of 25 ± 2 °C with a contact period of 24 h. It is pertinent to mention that maximum adsorption of 88% has been observed with a pH value of 6 with 6 h time duration with fluoride dosage of 50 mg/L. The equilibrium concentration dwindled to 0.4 mg/L at fluoride concentration of 20 mg/L. The Langmuir model designates the adsorption capacity value of 2.15 mg/L with initial fluoride concentration of 0.21 mg/g with R2 value of 0.660. Similarly, the adsorption capacity using Freundlich isotherms is found to be 0.58 L/g and 0.59 L/g with fluoride concentration of 1.84 mg/L and 2.15 mg/L respectively. The results from the present study confirm that coconut fiber possesses appropriate sorption capabilities of fluoride ion but is a pH dependent phenomenon. The outcomes of the study indicate the possible use of cellulose extracted from waste coconut fiber as a low-cost fluoride adsorbent. The present study can be well implemented on real scale systems as it will be beneficial economically as well as environmentally.
  4. Meena R, Hashmi AW, Ahmad S, Iqbal F, Soni H, Meena A, et al.
    Chemosphere, 2023 Dec;343:140225.
    PMID: 37742771 DOI: 10.1016/j.chemosphere.2023.140225
    Polypropylene composites find widespread application in industries, including packaging, plastic parts, automotive, textiles, and specialized devices like living hinges known for their remarkable flexibility. This study focuses on the manufacturing of polypropylene composite specimens by incorporating varying weight percentages of fly ash particles with polypropylene using a twin-screw extruder and injection molding machine. The composites were comprehensively tested, evaluating tensile, compressive, and flexural strength, solid-state and polymer melt properties, modulus, damping, and thermal response. The findings reveal that the compressive strength of polypropylene increases up to 2 wt% of added fly ash particles and subsequently exhibits a slight decline. Tensile strength demonstrates an increase up to 1 wt% of fly ash, followed by a decrease with a 2 wt% addition, and then a subsequent increase. Flexural strength shows improvement up to 3 wt% fly ash addition before declining. The storage modulus curve is categorized into three regions: the glassy region (up to 0 °C), the glass transition region (0-50 °C), and the glass transition region of polypropylene (>50 °C), each corresponding to different molecular motions. Weight loss curves exhibit similar trends, indicating uniform pyrolysis behavior attributed to consistent chemical bonds. Plastic degradation commences around 440 °C and concludes near 550 °C. Additionally, elemental mapping of fly ash composition identified various elements such as O, Si, K, Mg, Ca, Cl, Na, P, Al, Fe, S, Cu, Ti, and Ni. These findings offer valuable insights into the mechanical and thermal properties of polypropylene composites reinforced with fly ash, rendering them suitable for a wide range of industrial applications necessitating strength and durability across temperature variations.
  5. Soni A, Das PK, Yusuf M, Pasha AA, Irshad K, Bourchak M
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124566-124584.
    PMID: 35599290 DOI: 10.1007/s11356-022-20915-6
    The usage of waste for the development of sustainable building materials has received an increasing attention in socio-eco-environment spheres. The rice husk ash (RHA) produced during burning of rice husk and the ever-increasing plastic wastes are useless causing detrimental effects on the environment. This research supports the idea of sustainability and circular economy via utilization of waste to produce value-added products. This research explores the potential of waste plastics, RHA, and silica sand as thermoplastic composite materials. The different composite samples were prepared through waste plastics which includes low- and high-density polyethylene and polypropylene with incorporation of RHA and silica sand in proportions. The study investigates the effect of filler/polymer in 30/70, 20/80, and 10/90 (wt. %) on the workability of the developed composite materials. The workability of the composites was found to improve with filler reinforcement. The experimental results showed the maximum density of 1.676 g/cm3 and mechanical strength of 26.39, 4.89, and 3.25 MPa as compressive, flexural, and tensile strengths, respectively. The minimum percentage of water absorption was 0.052%. The wear tests resulted in a minimum abrasive and sliding wear rate of 0.03759 (cm3) and 0.00692 × 10-6 kg/m. The correlations between wear mechanisms and responses were morphologically analyzed. The developed composites verify the feasibility of RHA and plastics waste as a cost effective and environmentally competent product. The results and discussions provided a direction for the future research on sustainable polymeric composite materials.
  6. Bani-Melhem K, Elektorowicz M, Tawalbeh M, Al Bsoul A, El Gendy A, Kamyab H, et al.
    Chemosphere, 2023 Oct;339:139693.
    PMID: 37536541 DOI: 10.1016/j.chemosphere.2023.139693
    Treating and reusing wastewater has become an essential aspect of water management worldwide. However, the increase in emerging pollutants such as polycyclic aromatic hydrocarbons (PAHs), which are presented in wastewater from various sources like industry, roads, and household waste, makes their removal difficult due to their low concentration, stability, and ability to combine with other organic substances. Therefore, treating a low load of wastewater is an attractive option. The study aimed to address membrane fouling in the submerged membrane bioreactor (SMBR) used for wastewater treatment. An aluminum electrocoagulation (EC) device was combined with SMBR as a pre-treatment to reduce fouling. The EC-SMBR process was compared with a conventional SMBR without EC, fed with real grey water. To prevent impeding biological growth, low voltage gradients were utilized in the EC deviceThe comparison was conducted over 60 days with constant transmembrane pressure and infinite solid retention time (SRT). In phase I, when the EC device was operated at a low voltage gradient (0.64 V/cm), no significant improvement in the pollutants removal was observed in terms of color, turbidity, and chemical oxygen demand (COD). Nevertheless, during phase II, a voltage gradient of 1.26 V/cm achieved up to 100%, 99.7%, 92%, 94.1%, and 96.5% removals in the EC-SMBR process in comparison with 95.1%, 95.4%, 85%, 91.7% and 74.2% removals in the SMBR process for turbidity, color, COD, ammonia nitrogen (NH3-N), total phosphorus (TP), respectively. SMBR showed better anionic surfactant (AS) removal than EC-SMBR. A voltage gradient of 0.64 V/cm in the EC unit significantly reduced fouling by 23.7%, while 1.26 V/cm showed inconsistent results. Accumulation of Al ions negatively affected membrane performance. Low voltage gradients in EC can control SMBR fouling if Al concentration is controlled. Future research should investigate EC-SMBR with constant membrane flux for large-scale applications, considering energy consumption and operating costs.
  7. Kamyab H, Chelliapan S, Hayder G, Yusuf M, Taheri MM, Rezania S, et al.
    Chemosphere, 2023 Sep;335:139103.
    PMID: 37271472 DOI: 10.1016/j.chemosphere.2023.139103
    Metallic nanoparticles (NPs) are of particular interest as antimicrobial agents in water and wastewater treatment due to their broad suppressive range against bacteria, viruses, and fungi commonly found in these environments. This review explores the potential of different types of metallic NPs, including zinc oxide, gold, copper oxide, and titanium oxide, for use as effective antimicrobial agents in water and wastewater treatment. This is due to the fact that metallic NPs possess a broad suppressive range against bacteria, viruses, as well as fungus. In addition to that, NPs are becoming an increasingly popular alternative to antibiotics for treating bacterial infections. Despite the fact that most research has been focused on silver NPs because of the antibacterial qualities that are known to be associated with them, curiosity about other metallic NPs as potential antimicrobial agents has been growing. Zinc oxide, gold, copper oxide, and titanium oxide NPs are included in this category since it has been demonstrated that these elements have antibacterial properties. Inducing oxidative stress, damage to the cellular membranes, and breakdowns throughout the protein and DNA chains are some of the ways that metallic NPs can have an influence on microbial cells. The purpose of this review was to engage in an in-depth conversation about the current state of the art regarding the utilization of the most important categories of metallic NPs that are used as antimicrobial agents. Several approaches for the synthesis of metal-based NPs were reviewed, including physical and chemical methods as well as "green synthesis" approaches, which are synthesis procedures that do not involve the employment of any chemical agents. Moreover, additional pharmacokinetics, physicochemical properties, and the toxicological hazard associated with the application of silver NPs as antimicrobial agents were discussed.
  8. Warsi Khan H, Kaif Khan M, Moniruzzaman M, Al Mesfer MK, Danish M, Irshad K, et al.
    Environ Res, 2023 Aug 15;231(Pt 1):116058.
    PMID: 37178749 DOI: 10.1016/j.envres.2023.116058
    An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
  9. Qureshi F, Yusuf M, Ibrahim H, Kamyab H, Chelliapan S, Pham CQ, et al.
    Environ Res, 2023 Jul 15;229:115963.
    PMID: 37105287 DOI: 10.1016/j.envres.2023.115963
    Hydrogen (H2) is a possible energy transporter and feedstock for energy decarbonization, transportation, and chemical sectors while reducing global warming's consequences. The predominant commercial method for producing H2 today is steam methane reforming (SMR). However, there is still room for development in process intensification, energy optimization, and environmental concerns related to CO2 emissions. Reactors using metallic membranes (MRs) can handle both problems. Compared to traditional reactors, MRs operates at substantially lower pressures and temperatures. As a result, capital and operational costs may be significantly cheaper than traditional reactors. Furthermore, metallic membranes (MMs), particularly Pd and its alloys, naturally permit only H2 permeability, enabling the production of a stream with a purity of up to 99.999%. This review describes several methods for H2 production based on the energy sources utilized. SRM with CO2 capture and storage (CCUS), pyrolysis of methane, and water electrolysis are all investigated as process technologies. A debate based on a color code was also created to classify the purity of H2 generation. Although producing H2 using fossil fuels is presently the least expensive method, green H2 generation has the potential to become an affordable alternative in the future. From 2030 onward, green H2 is anticipated to be less costly than blue hydrogen. Green H2 is more expensive than fossil-based H2 since it uses more energy. Blue H2 has several tempting qualities, but the CCUS technology is pricey, and blue H2 contains carbon. At this time, almost 80-95% of CO2 can be stored and captured by the CCUS technology. Nanomaterials are becoming more significant in solving problems with H2 generation and storage. Sustainable nanoparticles, such as photocatalysts and bio-derived particles, have been emphasized for H2 synthesis. New directions in H2 synthesis and nanomaterials for H2 storage have also been discussed. Further, an overview of the H2 value chain is provided at the end, emphasizing the financial implications and outlook for 2050, i.e., carbon-free H2 and zero-emission H2.
  10. Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H
    Environ Res, 2023 Jul 01;228:115919.
    PMID: 37072081 DOI: 10.1016/j.envres.2023.115919
    The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
  11. Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, et al.
    J Biotechnol, 2023 Jun 10;369:14-34.
    PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003
    The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood . Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
  12. Soni A, Das PK, Yusuf M, Ridha S, Kamyab H, Alam MA, et al.
    Chemosphere, 2023 May;323:138233.
    PMID: 36863626 DOI: 10.1016/j.chemosphere.2023.138233
    The diverse nature of polymers with attractive properties has replaced the conventional materials with polymeric composites. The present study was sought to evaluate the wear performance of thermoplastic-based composites under the conditions of different loads and sliding speeds. In the present study, nine different composites were developed by using low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polyethylene terephthalate (PET) with partial sand replacements i.e., 0, 30, 40, and 50 wt%. The abrasive wear was evaluated as per the ASTM G65 standard test for abrasive wear through a dry-sand rubber wheel apparatus under the applied loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N) and sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s). The optimum density and compressive strength were obtained to be 2.0555 g/cm3 and 46.20 N/mm2, respectively for the composites HDPE60 and HDPE50 respectively. The minimum value of abrasive wear were found to 0.02498, 0.03430, 0.03095, 0.09020 and 0.03267 (cm3) under the considered loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N), respectively. Moreover, the composites LDPE50, LDPE100, LDPE100, LDPE50PET20 and LDPE60 showed a minimum abrasive wear of 0.03267, 0.05949, 0.05949, 0.03095 and 0.10292 at the sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s), respectively. The wear response varied non-linearly with the conditions of loads and sliding speeds. Micro-cutting, plastic deformations, fiber peelings, etc. were included as the possible wear mechanism. The possible correlations between wear and mechanical properties, and throughout discussions for wear behaviors through the morphological analyses of the worn-out surfaces were provided.
  13. Nguyen HT, Nguyen HT, Ahmed SF, Rajamohan N, Yusuf M, Sharma A, et al.
    Environ Res, 2023 Mar 30;227:115800.
    PMID: 37003549 DOI: 10.1016/j.envres.2023.115800
    The considerable increase in world energy consumption owing to rising global population, intercontinental transportation and industrialization has posed numerous environmental concerns. Particularly, in order to meet the required electricity supply, thermal power plants for electricity generation are widely used in many countries. However, an annually excessive quantity of waste fly ash up to 1 billion tones was globally discarded from the combustion of various carbon-containing feedstocks in thermoelectricity plants. About half of the industrially generated fly ash is dumped into landfills and hence causing soil and water contamination. Nonetheless, fly ash still contains many valuable components and possesses outstanding physicochemical properties. Utilizing waste fly ash for producing value-added products has gained significant interests. Therefore, in this work, we reviewed the current implementation of fly ash-derived materials, namely, zeolite and geopolymer as efficient adsorbents for the environmental treatment of flue gas and polluted water. Additionally, the usage of fly ash as a catalyst support for the photodegradation of organic pollutants and reforming processes for the corresponding wastewater remediation and H2 energy generation is thoroughly covered. In comparison with conventional carbon-based adsorbents, fly ash-derived geopolymer and zeolite materials reportedly exhibited greater heavy metal ions removal and reached the maximum adsorption capacity of about 150 mg g-1. As a support for biogas reforming process, fly ash could enhance the activity of Ni catalyst with 96% and 97% of CO2 and CH4 conversions, respectively.
  14. Abioye KJ, Harun NY, Sufian S, Yusuf M, Kamyab H, Hassan MA, et al.
    Chemosphere, 2023 Mar 23;330:138452.
    PMID: 36965529 DOI: 10.1016/j.chemosphere.2023.138452
    Combustion of palm oil decanter cake (PODC) is a propitious alternative waste to energy means. However, the mono-combustion of PODC prompt severe ash slagging behavior which give rise to reduction in heat transfer and also shorten the lifespan of combustion reactors. In this study, alum sludge (AS) was introduced at different proportion of 30%, 50% and 70% to revamp the slagging characteristics of PODC during combustion. The addition of AS improved ash fusion temperature of PODC during co-combustion as ash fusion temperature increased significantly under high AS dosage. Slagging and fouling indices showed that at 50% AS addition, slagging tendency of the co-combustion ashes can be ignored. The predictive model for PODC-AS combustion showed good correlation coefficient with 0.89. Overall, co-combustion of PODC and AS is an ideal ash related problem-solving route. The proposed PODC slagging preventive method by AS was based on: (1) limited amount of aluminum content in PODC-AS system resulted in development of refractory ash (2) reduction in proportion of basic oxide which act as ash bonding glue played important role in the regulation of slagging (3) reduction of cohesive bond by formation of spongy and porous structure which prevented ash slagging.
  15. Soni A, Das PK, Yusuf M, Kamyab H, Chelliapan S
    Sci Rep, 2022 Nov 07;12(1):18921.
    PMID: 36344577 DOI: 10.1038/s41598-022-19635-1
    Strict environmental concerns, depleting natural recourses, and rising demand for building construction materials have promoted scientific research toward alternative building materials. This research supports the idea of sustainability and a circular economy via the utilization of waste to produce value-added products. The research explored the potential of waste plastics and silica sand for developing thermoplastic composite as floor tiles. The samples were characterized by water absorption, compressive strength, flexural strength, and sliding wear. The morphological analysis of the sand-plastic interfaces was covered under the umbrella of this study. The maximum compressive and flexural strength were found to be 46.20 N/mm2 and 6.24 N/mm2, respectively, with the minimum water absorption and sliding wear rate of 0.039% and 0.143 × 10-8 kg/m, respectively. The study suggests the workability of the developed floor tiles in non-traffic areas of public places. Thus, the study provides a green building material through recycling waste plastics for sustainable development.
  16. Hariyono P, Dwiastuti R, Yusuf M, Salin NH, Hariono M
    Results Chem, 2022 Jan;4:100263.
    PMID: 34926138 DOI: 10.1016/j.rechem.2021.100263
    2-Phenoxyacetamide group has been identified as one of markers in the discovery and development of SARS-CoV-2 antiviral agent through its main protease (Mpro) inhibition pathway. This study aims to study a series of 2-phenoxyacetamide derivatives using in silico method toward SARS-CoV-2 Mpro as the protein target. The study was initiated by employing structure-based pharmacophore to virtually screen and to select the ligands, which have the best fit score (hits) along with the common pharmacophore features being matched. The result shows that from the 11 ligands designed, four ligands are selected as the hits by demonstrating fit score in the range of 56.20 to 65.53 to the pharmacophore model, employing hydrogen bond acceptor (HBA) and hydrophobic (H) as the common features. The hits were then docked into the binding site of the Mpro to see the binding mode of the corresponding hits as well as its affinity. The docking results free energy of binding (ΔGbind) of the hits are in agreement with the pharmacophore fit score, in the range of -6.83 to -7.20 kcal/ mol. To gain the information of the hits as a potential drug to be developed, the in silico study was further proceed by predicting the mutagenic potency, toxicity and pharmacokinetic profiles. Based on the efficiency percentage, all hits meet the criteria as drug candidates by showing 84-88% leading to a conclusion that 2-phenoxyacetamide derivatives are beneficial to be marked as the lead compound for SARS-CoV-2 Mpro inhibitor.
  17. Masood F, Nor NBM, Nallagownden P, Elamvazuthi I, Alam MA, Yusuf M, et al.
    Data Brief, 2021 Dec;39:107630.
    PMID: 34988268 DOI: 10.1016/j.dib.2021.107630
    The combined effect of design control factors on the response variables gives valuable information for geometric design optimization of the compound parabolic concentrator. This study presents the data related to the statistical modeling and analysis of variance for aperture width and height of a low concentration symmetric compound parabolic concentrator designed for photovoltaic applications. The design matrix was generated using the response surface modeling approach. The geometric design equations of the proposed concentrator were developed and solved analytically using MATLAB. The empirical models were developed to establish relationships between the control factors and response variables of the proposed system. The analysis of variance was conducted for two significant response variables. The developed statistical models can be used to predict the selected response variables within the permissible range. The presented data can be used for statistical modeling and design optimization of the two-dimensional symmetric compound parabolic concentrator.
  18. Alam MA, Ya HH, Yusuf M, Sivraj R, Mamat OB, Sapuan SM, et al.
    Materials (Basel), 2021 Aug 20;14(16).
    PMID: 34443232 DOI: 10.3390/ma14164703
    The tenacious thirst for fuel-saving and desirable physical and mechanical properties of the materials have compelled researchers to focus on a new generation of aluminum hybrid composites for automotive and aircraft applications. This work investigates the microhardness behavior and microstructural characterization of aluminum alloy (Al 7075)-titanium carbide (TiC)-graphite (Gr) hybrid composites. The hybrid composites were prepared via the powder metallurgy technique with the amounts of TiC (0, 3, 5, and 7 wt.%), reinforced to Al 7075 + 1 wt.% Gr. The microstructural characteristics were investigated by optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) elemental mapping. A Box Behnken design (BBD) response surface methodology (RSM) approach was utilized for modeling and optimization of density and microhardness independent parameters and to develop an empirical model of density and microhardness in terms of process variables. Effects of independent parameters on the responses have been evaluated by analysis of variance (ANOVA). The density and microhardness of the Al 7075-TiC-Gr hybrid composites are found to be increased by increasing the weight percentage of TiC particles. The optimal conditions for obtaining the highest density and microhardness are estimated to be 6.79 wt.% TiC at temperature 626.13 °C and compaction pressure of 300 Mpa.
  19. Budiman C, Goh CKW, Arief II, Yusuf M
    Cell Stress Chaperones, 2021 Mar;26(2):377-386.
    PMID: 33247372 DOI: 10.1007/s12192-020-01183-0
    FKBP22 of a psychrophilic bacterium, Shewanella sp. SIB1 (SIB1 FKBP22), is a member of peptidyl-prolyl cis-trans isomerase (PPIase) and consists of N- and C-domains responsible for chaperone-like and PPIase catalytic activities, respectively. The chaperone-like activity of SIB1 FKBP22 was previously evidenced by its ability to prevent dithiothreitol (DTT)-induced insulin aggregation. Nevertheless, the mechanism by which this protein inhibits the aggregation remains unclear. To address this, the binding affinity of SIB1 FKBP22 to the native or reduced states of insulin was examined using surface plasmon resonance (SPR). The native and reduced states refer to insulin in the absence or DTT presence, respectively. The SPR sensorgram showed that SIB1 FKBP22 binds specifically to the reduced state of insulin, with a KD value of 37.31 ± 3.20 μM. This binding was facilitated by the N-domain, as indicated by the comparable KD values of the N-domain and SIB1 FKBP22. Meanwhile, the reduced state of insulin was found to have no affinity towards the C-domain. The KD value of SIB1 FKBP22 was slightly decreased by NaCl but was not severely affected by FK506, a specific FKBP inhibitor. Similarly, the prevention of DTT-induced aggregation by SIB1 FKBP22 was also modulated by the N-domain and was not affected by FK506. Further, the reduced and native states of insulin had no effect on the catalytic efficiency (kcat/KM) of SIB1 FKBP22 towards a peptide substrate. Nevertheless, the reduced state of insulin slightly reduced the catalytic efficiency towards refolding RNase T1, at up to 1.5-fold lower than in the absence of insulin. These results suggested that the binding event was mainly facilitated by hydrophobic interaction and was independent from its PPIase activity. Altogether, a possible mechanism by which SIB1 FKBP22 prevents DTT-induced insulin aggregation was proposed.
  20. Hariono M, Hariyono P, Dwiastuti R, Setyani W, Yusuf M, Salin N, et al.
    Results Chem, 2021 Jan;3:100195.
    PMID: 34567959 DOI: 10.1016/j.rechem.2021.100195
    This present study reports some natural products and one hydroxamic acid synthetic compound which were previously reported as matrix metalloproteinase-9 (MMP-9) inhibitors to be evaluated for their inhibition toward severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 3-chymotrypsin-like protease (3CLpro). This enzyme is one of the proteins responsible for this coronaviral replication. Two herbal methanolic extracts i.e., Averrhoa carambola leaves and Ageratum conyzoides aerial part demonstrate >50% inhibition at 1000 µg/mL. Interestingly, apigenin, one of flavonoids, demonstrates 92% inhibition at 250 µg/mL (925 µM) as well as hydroxamic acid compound, N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid (NNGH), which shows 69% inhibition at 100 µM. The in vitro results are supported by the docking studies revealing that the binding mode of both compounds is mainly by interacting with GLU166 residue in the hydrophobic pocket of the 3CLpro. Pharmacophore mapping further supported the results by confirming that the in vitro activities of both compounds are due to their pharmacophore features employing hydrogen bond acceptor (HBA), hydrogen bond donor (HBD) and hydrophobic. Gas Chromatography-Mass Spectrometry (GC-MS) analysis reported chromene compounds in Ageratum conyzoides aerial part methanolic extract are potential to be this enzyme inhibitor candidate. These all results reflect their potencies to be SARS-CoV-2 inhibitors through 3CLpro inhibition mechanism.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links