Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Aloysius UI, Achike FI, Mustafa MR
    Vascul. Pharmacol., 2012 Sep-Oct;57(2-4):81-90.
    PMID: 22172524 DOI: 10.1016/j.vph.2011.11.009
    The female gender reduces the risk, but succumbs more to cardiovascular disease. The hypothesis that short-term (8weeks) Streptozotocin-induced diabetes could produce greater female than male vascular tissue reactivity and the mechanistic basis were explored. Aortic ring responses to Phenylephrine were examined in age- and sex-matched normoglycaemic/diabetic rats. The normoglycaemic male tissue contracted significantly more than the normoglycaemic female and the male/female diabetic tissues. Endothelial-denudation, l-NAME or MB reversed these differences suggesting an EDNO-cGMP dependence. 17β-oestradiol exerted relaxant effect on all endothelium-denuded (and normoglycaemic endothelium-intact male) tissues, but not endothelium-intact normoglycaemic female. The greater male tissue contraction is attributable to absent 17β-oestradiol-modulated relaxation. Indomethacin blockade of COX attenuated male normoglycaemic and female diabetic tissue contraction (both reversed by l-NAME), but augmented diabetic male tissue contraction. These data are consistent with the raised contractile TXA(2) and PGE(2) in normoglycaemic male and diabetic female tissues, and the relaxant PGI(2) in diabetic male (and female). The higher levels of PGI(2) in the normoglycaemic and diabetic female perhaps explain their greater relaxant response to Acetylcholine compared to the respective male. In conclusion, there is an endothelium-dependent gender difference in the effect of short term diabetes on vascular tissue reactivity which is COX mediated.
    Matched MeSH terms: Acetylcholine/pharmacology
  2. Ajay M, Mustafa MR
    Vascul. Pharmacol., 2006 Aug;45(2):127-33.
    PMID: 16807125 DOI: 10.1016/j.vph.2006.05.001
    Impaired vascular reactivity is a hallmark of several cardiovascular diseases that include hypertension and diabetes. This study compared the changes in vascular reactivity in age-matched experimental hypertension and diabetes, and, subsequently, tested whether these changes could be affected directly by ascorbic acid (10 microM). Endothelium-derived nitric oxide (NO) modulation of ascorbic acid effects was also investigated. All the experiments were performed in the presence of a cyclooxygenase inhibitor, indomethacin (10 microM). Results showed that the endothelium-dependent and -independent relaxations induced by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were blunted to a similar extent in isolated aortic rings from age-matched spontaneously hypertensive (SHR) (R(max): ACh = 72.83+/-1.86%, SNP = 96.6+/-1.90%) and diabetic (Rmax: ACh = 64.09+/-5.14%, SNP = 95.84+/-1.41%) rats compared with aortic rings of normal rats (Rmax: ACh = 89%, SNP = 104.0+/-1.0%). The alpha1-receptor-mediated contractions induced by phenylephrine (PE) were augmented in diabetic (Cmax = 148.8+/-9.0%) rat aortic rings compared to both normal (Cmax = 127+/-6.9%) and SHR (Cmax = 118+/-4.5%) aortic rings. Ascorbic acid pretreatment was without any significant effects on the vascular responses to ACh, SNP and PE in aortic rings from normal rats. Ascorbic acid significantly improved ACh-induced relaxations in SHR (Rmax = 89.09+/-2.82%) aortic rings to a level similar to that observed in normal aortic rings, but this enhancement in ACh-induced relaxations was only partial in diabetic aortic rings. Ascorbic acid lacked any effects on SNP-induced relaxations in both SHR and diabetic aortic rings. Ascorbic acid markedly attenuated contractions induced by PE in aortic rings from both SHR (Cmax = 92.9+/-6.68%) and diabetic (Cmax = 116.9+/-9.4%) rats. Additionally, following inhibition of nitric oxide synthesis with l-NAME, ascorbic acid attenuated PE-induced contractions in all aortic ring types studied. These results suggest that (1) vascular hyper-responsiveness to alpha(1)-receptor agonists in diabetic arteries is independent of endothelial nitric oxide dysfunction; (2) ascorbic acid directly modulates contractile responses of hypertensive and diabetic rat aortas, likely through mechanisms in part independent of preservation of endothelium-derived nitric oxide.
    Matched MeSH terms: Acetylcholine/pharmacology
  3. Sanip Z, Hanaffi SH, Ahmad I, Yusoff SS, Rasool AH, Yusoff HM
    Tob Induc Dis, 2015;13(1):32.
    PMID: 26346914 DOI: 10.1186/s12971-015-0052-9
    BACKGROUND: Studies have demonstrated that secondhand smoke (SHS) exposure could impair endothelial function. However, the effect of SHS exposure specifically on microvascular endothelial function is not well understood. This study aimed to determine the effects of SHS exposure on microvascular endothelial function among non-smoking, generally healthy women.

    FINDINGS: We studied 127 women; and based on their hair nicotine levels measured using gas chromatography-mass spectrometry, 25 of them were categorized as having higher hair nicotine levels, 25 were grouped as having lower hair nicotine and 77 women were grouped into the non-detected group. The non-detected group did not have detectable levels of hair nicotine. Anthropometry, blood pressure (BP), lipid profile and high-sensitivity C-reactive protein (hsCRP) were measured accordingly. Microvascular endothelial function was assessed non-invasively using laser Doppler fluximetry and the process of iontophoresis involving acetylcholine and sodium nitroprusside as endothelium-dependent and endothelium-independent vasodilators respectively. The mean hair nicotine levels for higher and lower hair nicotine groups were 0.74 (1.04) and 0.05 (0.01) ng/mg respectively. There were no significant differences in anthropometry, BP, lipid profile and hsCRP between these groups. There were also no significant differences in the microvascular perfusion and endothelial function between these groups.

    CONCLUSION: In this study, generally healthy non-smoking women who have higher, lower and non-detected hair nicotine levels did not show significant differences in their microvascular endothelial function. Low levels of SHS exposure among generally healthy non-smoking women may not significantly impair their microvascular endothelial function.

    Matched MeSH terms: Acetylcholine
  4. Mudassar Imran Bukhari S, Yew KK, Thambiraja R, Sulong S, Ghulam Rasool AH, Ahmad Tajudin LS
    Ther Adv Ophthalmol, 2019 08 22;11:2515841419868100.
    PMID: 31489400 DOI: 10.1177/2515841419868100
    Purpose: To determine the role of microvascular endothelial dysfunction as risk factor for primary open angle glaucoma.

    Methods: A cross-sectional study was conducted involving 114 Malay patients with POAG seen at the eye clinic of Hospital Universiti Sains Malaysia. Patients aged between 40 and 80 years who were diagnosed with other types of glaucoma, previous glaucoma filtering surgery or other surgeries except uncomplicated cataract surgery and pterygium surgery were excluded. A total of 101 patients who were followed up for dry eyes, age-related cataracts or post cataracts extraction surgery were recruited as control subjects. Those with family history of glaucoma or glaucoma suspect were excluded. Microvascular endothelial function was assessed using laser Doppler fluximetry and the process of iontophoresis. Iontophoresis with acetylcholine (ACh) and sodium nitroprusside (SNP) was used to measure microvascular endothelium-dependent and endothelium-independent vasodilatations, respectively.

    Results: In general, POAG patients demonstrated lower ACh% and AChmax values compared with controls. There was significant difference in microvascular endothelial function [ACh%: mean, 95% confidence interval = 503.1 (378.0, 628.3), and AChmax: mean, 95% confidence interval = 36.8 (30.2, 43.5)] between primary open angle glaucoma cases (p 

    Matched MeSH terms: Acetylcholine
  5. Leong XF, Najib MN, Das S, Mustafa MR, Jaarin K
    Tohoku J. Exp. Med., 2009 Sep;219(1):71-8.
    PMID: 19713687
    Oxidization of dietary cooking oil increases the risk of cardiovascular diseases such as hypertension by increasing the formation oxidative oxygen radicals. The aim of study was to investigate the effects of repeatedly heated palm oil on blood pressure, plasma nitrites, and vascular reactivity. Nitrites were measured, as an indirect marker for nitric oxide production. Male Sprague-Dawley rats were divided into four groups: control group fed with basal diet and other three groups fortified with 15% weight/weight fresh palm oil (FPO), palm oil heated five times (5HPO) or palm oil heated ten times (10HPO) for 24 weeks. The oil was heated to 180 degrees C for 10 min. Blood pressure was measured at baseline and at intervals of four weeks for 24 weeks using non-invasive tail-cuff method. Following 24 weeks, the rats were sacrificed and thoracic aortas were dissected for measurement of vascular reactivity. Blood pressure was elevated significantly (p < 0.05) in 5HPO and 10HPO groups, with the 10HPO group showing higher values. Aortic rings from animals fed with heated oil showed diminished relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Acetylcholine and sodium nitroprusside cause endothelium-dependent and endothelium-independent relaxation, respectively. Relaxation responses remained unaltered in the FPO group, with the attenuated contractile response to phenylephrine, compared to control group. FPO increased plasma nitrites by 28%, whereas 5HPO and 10HPO reduced them by 25% and 33%, respectively. Intake of repeatedly heated palm oil causes an increase in blood pressure, which may be accounted for by the attenuated endothelium-dependent vasorelaxant response.
    Matched MeSH terms: Acetylcholine/pharmacology
  6. Thevathasan OI, Archdeacon JW
    Med J Malaya, 1966 Jun;20(4):306-15.
    PMID: 4224339
    Matched MeSH terms: Acetylcholine/pharmacology*
  7. Wong FC, Ahmad M, Heng LY, Peng LB
    Talanta, 2006 Jun 15;69(4):888-93.
    PMID: 18970653 DOI: 10.1016/j.talanta.2005.11.034
    An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R(2)=0.98, n=3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90mM AChCl (R(2)=0.984, n=6). The response time of the biosensor is 12min. Based on the optimum incubation time of 15min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7mg/L of dichlorvos (17-85% inhibition, R(2)=0.991, n=9). The detection limit for dichlorvos was 0.5mg/L. The results of the analysis of 1.7-6.0mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.
    Matched MeSH terms: Acetylcholine; Acetylcholinesterase
  8. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR
    Sci Rep, 2016 09 12;6:33048.
    PMID: 27616322 DOI: 10.1038/srep33048
    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS.
    Matched MeSH terms: Acetylcholine/administration & dosage
  9. David SR, Lai PPN, Chellian J, Chakravarthi S, Rajabalaya R
    Sci Rep, 2023 Aug 01;13(1):12423.
    PMID: 37528147 DOI: 10.1038/s41598-023-39442-6
    The present work examined the effect of oral administration of rutin and its combination with metformin, an antidiabetic drug on blood glucose, total cholesterol and triglycerides level and vascular function in streptozotocin (STZ) -induced diabetic rats. Male Sprague Dawley rats were rendered diabetic by a single intraperitoneal injection of STZ (50 mg/kg). Rutin and metformin were orally administered to diabetic rats at a dose of 100 mg/kg and 300 mg/kg body weight/day, respectively, for 4 weeks. Plasma analysis was conducted to determine changes in the plasma glucose and lipid levels. Rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the α1-adrenergic agonist phenylephrine (PE) were recorded. Histology of pancreas, liver and kidney were evaluated. In results, rutin and metformin alone and in combination has led to significant improvements in blood glucose, cholesterol and triglyceride levels compared to diabetic group. Diabetic aortic rings showed significantly greater contraction in response to PE, and less relaxation in response to ACh and SNP. Treatment with rutin and metformin in combination significantly reduced PE-induced contraction and increased ACh-induced and SNP-induced relaxation in diabetes when compared to rutin or metformin alone. Significant histological improvements were seen with combination therapy. In conclusion, rutin and metformin combination therapy has the most potentiality for restoring blood glucose and lipid level as well as vascular function.
    Matched MeSH terms: Acetylcholine/pharmacology
  10. Choo BKM, Kundap UP, Johan Arief MFB, Kumari Y, Yap JL, Wong CP, et al.
    PMID: 30844417 DOI: 10.1016/j.pnpbp.2019.02.014
    Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.
    Matched MeSH terms: Acetylcholine/metabolism
  11. Mani V, Ramasamy K, Ahmad A, Wahab SN, Jaafar SM, Kek TL, et al.
    Phytother Res, 2013 Jan;27(1):46-53.
    PMID: 22447662 DOI: 10.1002/ptr.4676
    Alzheimer's disease (AD) is characterized by signs of major oxidative stress and the loss of cholinergic cells. The present study was designed to investigate the role of the total alkaloidal extract from Murraya koenigii (MKA) leaves on age related oxidative stress and the cholinergic pathway in aged mice. Ascorbic acid (100 mg/kg, p.o.) was used as a standard drug. The MKA improved the level of protective antioxidants such as glutathione peroxidase (GPx), reduced glutathione (GSH), glutathione reductase (GRD), superoxide dismutase (SOD) and catalase (CAT) in brain homogenate at higher doses (20 and 40 mg/kg, p.o.). Moreover, a dose dependent decline was noted in lipid peroxidation (LPO) and the nitric oxide assay (NO) at all doses of MKA (10, 20 and 40 mg/kg, p.o.). Interestingly, significant progress was noted with the supplementation of MKA by an improvement of the acetylcholine (ACh) levels and a reduction in the acetylcholinesterase (AChE) activity in aged mouse brain. In addition, a significant elevation of serum albumin (ALBU), alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) and total protein as well as a decline in creatinine, total cholesterol, urea nitrogen and glucose levels with MKA also ameliorated the hepatic and renal functions in normal ageing process. The results showed the possible utility of Murraya koenigii leaves in neuroprotection against neurodegenerative disorders such as Alzheimer's disease.
    Matched MeSH terms: Acetylcholine/metabolism; Acetylcholinesterase/metabolism
  12. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Acetylcholine/pharmacology
  13. Lutterodt GD
    Pharmacol Res, 1995 Jul-Aug;32(1-2):89-94.
    PMID: 8668653 DOI: 10.1016/S1043-6618(95)80014-X
    Sidaverin, a crystalline compound extracted from a polar fraction of Sida veronicaefolia (Lam), elicited oxytocin-like contractions in the non-gravid rat isolated uterus preparation with a concentration-response relationship. Equipotent concentrations of oxytocin and sidaverin, using matched responses, were approximately 0.16 U and 0.4 micrograms ml-1, respectively. Sidaverin-induced contractile response was atropine reversible. The concentration-response curves for sidaverin and oxytocin were parallel, and both responses were inhibited by the specific oxytocin antagonist, Atosiban, indicating possible involvement of oxytocin receptors in the action of sidaverin. There were potentiation of action of one drug to that of the other, irrespective of the order of administration and even after washing off the first before introducing the second drug. In the gravid uterus, sidaverin produced contractions in preparations from day 1 to day 6 or 7, caused relaxation in days 7-11, and elicited contractions in day 11 through term, the sensitivity of the preparations increasing exponentially toward term with strong sustained contractions. With the exception of days 7-11, when sidaverin antagonized oxytocin action, it potentiated action of oxytocin on the gravid uterus.
    Matched MeSH terms: Acetylcholine/pharmacology
  14. Akbar A, Sharma JN
    Pharmacol Res, 1992 Apr;25(3):279-86.
    PMID: 1518772
    We have investigated the effect of indomethacin on histamine- and acetylcholine (ACh)-induced responses in the intact and denuded epithelium of guinea pig isolated tracheal smooth muscle. Epithelium removal resulted in increased responsiveness to ACh and histamine. Indomethacin (2.8 microM) enhanced the sensitivity of both intact and denuded preparations to histamine and ACh. These findings suggest that the tracheal epithelium of guinea pig plays a protective role against bronchoconstrictors, such as ACh and histamine. Furthermore, indomethacin-mediated hyperresponsiveness caused by these agonists in epithelium denuded preparations might be a reflection of removal of prostaglandin (PG) biosynthesis. A similar process of interaction in indomethacin-treated asthmatic patients (with damaged airway epithelium) might take place. The significance of these findings is discussed.
    Matched MeSH terms: Acetylcholine/pharmacology*
  15. Damodaran T, Müller CP, Hassan Z
    Pharmacol Rep, 2019 Jun;71(3):443-448.
    PMID: 31003155 DOI: 10.1016/j.pharep.2019.01.012
    BACKGROUND: Chronic cerebral hypoperfusion (CCH) can induce the accumulation of reactive oxygen species, which leads to oxidative damage, neuronal injury, and central cholinergic dysfunction in vulnerable regions of the brain, such as the hippocampus and cerebral cortex. These effects can lead to significant cognitive impairments in clinical populations of vascular dementia (VaD). The present studies aimed to investigate the role of the cholinergic system in memory functions and hippocampal long-term potentiation (LTP) impairments induced by CCH in rats.

    METHODS: Male Sprague Dawley rats were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham surgery. Then, PBOCCA rats received ip injections with, either vehicle (control group), the muscarinic receptor agonist oxotremorine (0.1 mg/kg), or the acetylcholinesterase inhibitor physostigmine (0.1 mg/kg). Cognitive functions were evaluated using a passive avoidance task and the Morris water maze test. In addition, hippocampal LTP was recorded in vivo under anaesthesia.

    RESULTS: The PBOCCA rats exhibited significant deficits in passive avoidance retention and spatial learning and memory tests. They also showed a suppression of LTP formation in the hippocampus. Oxotremorine and physostigmine significantly improved the learning and memory deficits as well as the suppression of LTP in PBOCCA rats.

    CONCLUSIONS: The present data suggest that the cholinergic system plays an important role in CCH-induced cognitive deficits and could be an effective therapeutic target for the treatment of VaD.

    Matched MeSH terms: Acetylcholine/pharmacology
  16. Ahmed F, Ghalib RM, Sasikala P, Ahmed KK
    Pharmacogn Rev, 2013 Jul;7(14):121-30.
    PMID: 24347920 DOI: 10.4103/0973-7847.120511
    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed.
    Matched MeSH terms: Acetylcholine; Acetylcholinesterase
  17. Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K
    Pharm Biol, 2017 Dec;55(1):825-832.
    PMID: 28118770 DOI: 10.1080/13880209.2017.1280688
    CONTEXT: Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties.

    OBJECTIVE: Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo.

    MATERIALS AND METHODS: Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes.

    RESULTS: VCO-fed Wistar rats exhibited significant (p  33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT.

    DISCUSSION AND CONCLUSION: VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.

    Matched MeSH terms: Acetylcholine/analysis
  18. Hisyam Jamari, Mohd Salleh Rofiee, Richard James Johari, Mohd Zaki Salleh, Teh, Lay Kek
    MyJurnal
    The potential of Moringa oleifera Lam. (Moringaceae) and Centella asiatica (L.) Urban (Apiaceae) extracts (TGT-PRIMAAGE) in slowing the decline of memory and learning activity was investigated using D-galactose-induced ageing rat model. The extracts were profiled and standardised based on markers identified using LC/MS-QTOF. Toxicity study of the extract was done, and the rat did not show any sign of toxicity. The extract was orally administered to the rat and dose dependent (100, 500 and 1000 mg/kg) efficacy were investigated. The rats were subjected to Morris Water Maze whereby 3 parameters were studied (number of entry to platform, latency and novel object recognition). Plasma was collected for the determination of catalase (CAT) activity and levels of malondialdehyde (MDA) and advanced glycation end products (AGEs). The activity of acetylcholinesterase (AChE), level of acetylcholine (ACh) and lipid peroxidation (LPO) were measured using the brain lysates. Significant improvement (p < 0.05) was seen in the memory and learning abilities in the aged rats that received medium and high dose of TGT-PRIMAAGE, and tocotrienol. Rats treated with TGT-PRIMAAGE had also shown improved CAT activity and resulted in reduced LPO. The level of ACh was found increased in parallel with the reduced AChE activity. The capabilities of learning and memory of the TGT-PRIMAAGE treated rats were enhanced via inhibition of AChE activity and subsequently increased level of ACh.
    Matched MeSH terms: Acetylcholine; Acetylcholinesterase
  19. Said S. E. H. Elnashaie
    MyJurnal
    Bifurcation and chaos are important phenomena affecting many physical and chemical systems. They are also related to the stability/instability and multiplicity phenomena associated with these systems. The phenomena are not only of theoretical/mathematical interest but are also important for laboratory, pilot plant and commercial units. This paper concentrates on 3 systems:

    1. The novel auto-thermic Circulating Fluidized Membrane Steam Reformer (CFBMSR) for the efficient production of the clean fuel hydrogen and which shows multiplicity of the steady state (static bifurcation)

    2. A novel fermentor for the efficient production of bio-ethanol that shows static/dynamic bifurcation as well as chaotic behaviour

    3. The neurocycle of the acetylcholine transmitter in the brain using diffusion-reaction models in order to gain insight into their possible connection to Alzheimer and Parkinson Diseases (AD/PD); these are preliminary efforts to investigate the bifurcation and chaotic behaviour of this neurocycle.
    Matched MeSH terms: Acetylcholine
  20. Azemi AK, Mokhtar SS, Rasool AHG
    Oxid Med Cell Longev, 2020;2020:7572892.
    PMID: 32879653 DOI: 10.1155/2020/7572892
    Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n = 12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.
    Matched MeSH terms: Acetylcholine/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links