Displaying publications 1 - 20 of 138 in total

Abstract:
Sort:
  1. Arsad FS, Hod R, Ahmad N, Baharom M, Ja'afar MH
    Environ Sci Pollut Res Int, 2023 Jun;30(29):73137-73149.
    PMID: 37211568 DOI: 10.1007/s11356-023-27089-9
    Thermal comfort is linked to our health, well-being, and productivity. The thermal environment is one of the main factors that influence thermal comfort and, consequently, the productivity of occupants inside buildings. Meanwhile, behavioural adaptation is well known to be the most critical contributor to the adaptive thermal comfort model. This systematic review aims to provide evidence regarding indoor thermal comfort temperature and related behavioural adaptation. Studies published between 2010 and 2022 examining indoor thermal comfort temperature and behavioural adaptations were considered. In this review, the indoor thermal comfort temperature ranges from 15.0 to 33.8 °C. The thermal comfort temperature range varied depending on several factors, such as climatic features, ventilation mode, type of buildings, and age of the study population. Elderly and younger children have distinctive thermal acceptability. Clothing adjustment, fan usage, AC usage, and open window were the most common adaptive behaviour performed. Evidence shows that behavioural adaptations were also influenced by climatic features, ventilation mode, type of buildings, and age of the study population. Building designs should incorporate all factors that affect the thermal comfort of the occupants. Awareness of practical behavioural adaptations is crucial to ensure occupants' optimal thermal comfort.
    Matched MeSH terms: Adaptation, Physiological
  2. Kong C, Wong RR, Ghazali AK, Hara Y, Tengku Aziz TN, Nathan S
    Microb Genom, 2023 Apr;9(4).
    PMID: 37018040 DOI: 10.1099/mgen.0.000982
    Burkholderia pseudomallei, a Gram-negative pathogen, is the causative agent of melioidosis in humans. This bacterium can be isolated from the soil, stagnant and salt-water bodies, and human and animal clinical specimens. While extensive studies have contributed to our understanding of B. pseudomallei pathogenesis, little is known about how a harmless soil bacterium adapts when it shifts to a human host and exhibits its virulence. The bacterium's large genome encodes an array of factors that support the pathogen's ability to survive under stressful conditions, including the host's internal milieu. In this study, we performed comparative transcriptome analysis of B. pseudomallei cultured in human plasma versus soil extract media to provide insights into B. pseudomallei gene expression that governs bacterial adaptation and infectivity in the host. A total of 455 genes were differentially regulated; genes upregulated in B. pseudomallei grown in human plasma are involved in energy metabolism and cellular processes, whilst the downregulated genes mostly include fatty acid and phospholipid metabolism, amino acid biosynthesis and regulatory function proteins. Further analysis identified a significant upregulation of biofilm-related genes in plasma, which was validated using the biofilm-forming assay and scanning electron microscopy. In addition, genes encoding known virulence factors such as capsular polysaccharide and flagella were also overexpressed, suggesting an overall enhancement of B. pseudomallei virulence potential when present in human plasma. This ex vivo gene expression profile provides comprehensive information on B. pseudomallei's adaptation when shifted from the environment to the host. The induction of biofilm formation under host conditions may explain the difficulty in treating septic melioidosis.
    Matched MeSH terms: Adaptation, Physiological
  3. Battlay P, Wilson J, Bieker VC, Lee C, Prapas D, Petersen B, et al.
    Nat Commun, 2023 Mar 27;14(1):1717.
    PMID: 36973251 DOI: 10.1038/s41467-023-37303-4
    Adaptation is the central feature and leading explanation for the evolutionary diversification of life. Adaptation is also notoriously difficult to study in nature, owing to its complexity and logistically prohibitive timescale. Here, we leverage extensive contemporary and historical collections of Ambrosia artemisiifolia-an aggressively invasive weed and primary cause of pollen-induced hayfever-to track the phenotypic and genetic causes of recent local adaptation across its native and invasive ranges in North America and Europe, respectively. Large haploblocks-indicative of chromosomal inversions-contain a disproportionate share (26%) of genomic regions conferring parallel adaptation to local climates between ranges, are associated with rapidly adapting traits, and exhibit dramatic frequency shifts over space and time. These results highlight the importance of large-effect standing variants in rapid adaptation, which have been critical to A. artemisiifolia's global spread across vast climatic gradients.
    Matched MeSH terms: Adaptation, Physiological/genetics
  4. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Arolu F, et al.
    Mol Biol Rep, 2023 Mar;50(3):2795-2812.
    PMID: 36592290 DOI: 10.1007/s11033-022-07853-9
    Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
    Matched MeSH terms: Adaptation, Physiological/genetics
  5. Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, et al.
    Nat Commun, 2022 02 03;13(1):689.
    PMID: 35115514 DOI: 10.1038/s41467-022-28359-9
    As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.
    Matched MeSH terms: Adaptation, Physiological/genetics
  6. Birkmann J, Jamshed A, McMillan JM, Feldmeyer D, Totin E, Solecki W, et al.
    Sci Total Environ, 2022 Jan 10;803:150065.
    PMID: 34525713 DOI: 10.1016/j.scitotenv.2021.150065
    Climate change is a severe global threat. Research on climate change and vulnerability to natural hazards has made significant progress over the last decades. Most of the research has been devoted to improving the quality of climate information and hazard data, including exposure to specific phenomena, such as flooding or sea-level rise. Less attention has been given to the assessment of vulnerability and embedded social, economic and historical conditions that foster vulnerability of societies. A number of global vulnerability assessments based on indicators have been developed over the past years. Yet an essential question remains how to validate those assessments at the global scale. This paper examines different options to validate global vulnerability assessments in terms of their internal and external validity, focusing on two global vulnerability indicator systems used in the WorldRiskIndex and the INFORM index. The paper reviews these global index systems as best practices and at the same time presents new analysis and global results that show linkages between the level of vulnerability and disaster outcomes. Both the review and new analysis support each other and help to communicate the validity and the uncertainty of vulnerability assessments. Next to statistical validation methods, we discuss the importance of the appropriate link between indicators, data and the indicandum. We found that mortality per hazard event from floods, drought and storms is 15 times higher for countries ranked as highly vulnerable compared to those classified as low vulnerable. These findings highlight the different starting points of countries in their move towards climate resilient development. Priority should be given not just to those regions that are likely to face more severe climate hazards in the future but also to those confronted with high vulnerability already.
    Matched MeSH terms: Adaptation, Physiological
  7. Stewart-Williams S
    Behav Brain Sci, 2021 09 30;44:e113.
    PMID: 34588037 DOI: 10.1017/S0140525X20001119
    It is premature to conclude that music is an adaptation. Given the danger of overextending the adaptationist mode of explanation, the default position should be the byproduct hypothesis, and it should take very strong evidence to drag us into the adaptationist camp. As yet, the evidence isn't strong enough - and the proposed adaptationist explanations have a number of unresolved difficulties.
    Matched MeSH terms: Adaptation, Physiological
  8. Lee SH, Golinska M, Griffiths JR
    Cells, 2021 Sep 09;10(9).
    PMID: 34572020 DOI: 10.3390/cells10092371
    In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
    Matched MeSH terms: Adaptation, Physiological/physiology*
  9. Ord TJ, Klomp DA, Summers TC, Diesmos A, Ahmad N, Das I
    Ecol Lett, 2021 Sep;24(9):1750-1761.
    PMID: 34196091 DOI: 10.1111/ele.13773
    Convergence in communication appears rare compared with other forms of adaptation. This is puzzling, given communication is acutely dependent on the environment and expected to converge in form when animals communicate in similar habitats. We uncover deep-time convergence in territorial communication between two groups of tropical lizards separated by over 140 million years of evolution: the Southeast Asian Draco and Caribbean Anolis. These groups have repeatedly converged in multiple aspects of display along common environmental gradients. Robot playbacks to free-ranging lizards confirmed that the most prominent convergence in display is adaptive, as it improves signal detection. We then provide evidence from a sample of the literature to further show that convergent adaptation among highly divergent animal groups is almost certainly widespread in nature. Signal evolution is therefore curbed towards the same set of adaptive solutions, especially when animals are challenged with the problem of communicating effectively in noisy environments.
    Matched MeSH terms: Adaptation, Physiological
  10. Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SAR, Ayal D, et al.
    Sci Total Environ, 2021 Jul 20;779:146414.
    PMID: 33735656 DOI: 10.1016/j.scitotenv.2021.146414
    Climate change is one of the major challenges societies round the world face at present. Apart from efforts to achieve a reduction of emissions of greenhouse gases so as to mitigate the problem, there is a perceived need for adaptation initiatives urgently. Ecosystems are known to play an important role in climate change adaptation processes, since some of the services they provide, may reduce the impacts of extreme events and disturbance, such as wildfires, floods, and droughts. This role is especially important in regions vulnerable to climate change such as the African continent, whose adaptation capacity is limited by many geographic and socio-economic constraints. In Africa, interventions aimed at enhancing ecosystem services may play a key role in supporting climate change adaptation efforts. In order to shed some light on this aspect, this paper reviews the role of ecosystems services and investigates how they are being influenced by climate change in Africa. It contains a set of case studies from a sample of African countries, which serve the purpose to demonstrate the damages incurred, and how such damages disrupt ecosystem services. Based on the data gathered, some measures which may assist in fostering the cause of ecosystems services are listed, so as to cater for a better protection of some of the endangered Africa ecosystems, and the services they provide.
    Matched MeSH terms: Adaptation, Physiological
  11. Mohamad S, Liew HJ, Zainuddin RA, Rahmah S, Waiho K, Ghaffar MA, et al.
    J Fish Biol, 2021 Jul;99(1):206-218.
    PMID: 33629400 DOI: 10.1111/jfb.14712
    Climate warming and low pH environment are known to negatively impact all levels of aquatic organism from cellular to organism and population levels. For ammonotelic freshwater species, any abiotic factor fluctuation will cause disturbance to the fish, specifically at the gills which act as a multifunctional organ to support all biological processes. Therefore, this study was designed to investigate the effect of temperature (28 vs. 32°C) and pH (7.0 vs. 5.0) stress on the gill plasticity of Hoven's carp after 20 days of continuous exposure. The results demonstrated that high temperature and low pH caused severe changes on the primary and secondary lamellae as well as the cells within lamellae. An increasing trend of the proportion available for gas exchange was noticed at high temperature in both pH exposures, which resulted from a reduction of the primary lamellae width with elongated and thinner secondary lamellae compared to fishes at ambient temperature. Following exposure to high temperature and acidic pH, Hoven's carp experienced gill modifications including aneurysm, oedema, hypertrophy, curling of secondary lamellae, epithelial lifting, hyperplasia and lamellae fusion. These modifications are indicators of the coping mechanism of Hoven's carp to the changing environment in order to survive.
    Matched MeSH terms: Adaptation, Physiological
  12. Berahim Z, Dorairaj D, Omar MH, Saud HM, Ismail MR
    Sci Rep, 2021 05 21;11(1):10669.
    PMID: 34021188 DOI: 10.1038/s41598-021-89812-1
    Rice which belongs to the grass family is vulnerable to water stress. As water resources get limited, the productivity of rice is affected especially in granaries located at drought prone areas. It would be even worse in granaries located in drought prone areas such as KADA that receives the lowest rainfall in Malaysia. Spermine (SPM), a polyamine compound that is found ubiquitiosly in plants is involved in adaptation of biotic and abiotic stresses. The effect of SPM on growth,grain filling and yield of rice at three main granaries namely, IADA BLS, MADA and KADA representing unlimited water, limited water and water stress conditions respectively, were tested during the main season. Additinally, the growth enhancer was also tested during off season at KADA. Spermine increased plant height, number of tillers per hill and chlorophyll content in all three granaries. Application of SPM improved yield by 38, 29 and 20% in MADA, KADA and IADA BLS, respectively. Harvest index showed 2.6, 6 and 16% increases at IADA BLS, KADA and MADA, respectively in SPM treated plants as compared to untreated. Except for KADA which showed a reduction in yield at 2.54 tha-1, SPM improved yield at MADA, 7.21 tha-1 and IADA BLS, 9.13 tha-1 as compared to the average yield at these respective granaries. In the second trial, SPM increased the yield to 7.0 and 6.4 tha-1 during main and off seasons, respectively, indicating that it was significantly higher than control and the average yield reported by KADA. The yield of SPM treatments improved by 25 and 33% with an increment of farmer's income at main and off seasons, respectively. Stomatal width was significantly higher than control at 11.89 µm. In conclusion, irrespective of the tested granaries and rice variety, spermine mediated plots displayed increment in grain yield.
    Matched MeSH terms: Adaptation, Physiological
  13. Zhang X, Sun J, Chen F, Qi H, Chen L, Sung YY, et al.
    Microb Genom, 2021 05;7(5).
    PMID: 33952389 DOI: 10.1099/mgen.0.000549
    The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10-55 p.p.t.), temperature (23-37 °C) and pH (6-10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
    Matched MeSH terms: Adaptation, Physiological
  14. Shaffril HAM, Samah AA, Samsuddin SF
    Environ Sci Pollut Res Int, 2021 May;28(18):22265-22277.
    PMID: 33745056 DOI: 10.1007/s11356-021-13178-0
    This study proposes a set of GuFSyADD guidelines on steps for developing  suggestions that  enhance of its rigor in systematic literature review (SLR) for studies related to climate change adaptation. The prescribed guidelines are based on the following six steps, (1) guided by review of protocol/publication standard/established guidelines/related published articles, (2) formulation of review questions, (3) systematic searching strategies, (4) appraisal of quality, (5) data extraction and analysis, and (6) data demonstration. Essentially, this set of proposed  guidelines enables researchers to develop an SLR pertaining to climate change adaptation in an organised, transparent, and replicable manner.
    Matched MeSH terms: Adaptation, Physiological*
  15. Loo JL, Keng SL, Ramírez-Espinosa IG, Nor Hadi NM, Ramírez-Gutiérrez JA, Shoesmith W
    Asia Pac Psychiatry, 2021 Mar;13(1):e12437.
    PMID: 33188568 DOI: 10.1111/appy.12437
    BACKGROUND: Borderline personality disorder (BPD) contributes to suicide-related morbidity and mortality and requires more intensive psychotherapeutic resources due to its high mental health service usage. Accessibility to an evidence-based treatment program is a cornerstone to support patients with BPD and part of broader suicide prevention efforts as well as improving their quality of life.

    AIMS: In this article, the authors aim to discuss and review available dialectical behavior therapy (DBT) and DBT-informed services of selected countries in the Asia-Pacific Rim, namely Singapore, Malaysia, and Mexico.

    MATERIALS & METHODS: We contacted providers of different services and gathered information on the process of setting up the service and adapting the treatment, in addition to reviewing the available literature published in the countries.

    RESULTS: To date, there have been a pair of DBT-informed services in Singapore, four in Malaysia, and several in Mexico with a few of them offering standard DBT. Different efforts have been put in place to increase the accessibility to training and also the number of DBT practitioners.

    DISCUSSION: Important considerations during the process of setting up new services include the use of domestic examples and local language that are contextually appropriate for the local community. Selected challenges faced in common include shortage of workforce, affordability of training programs, and the need for language adaptation with or without translation.

    CONCLUSION: Further long-term evaluation of locally adapted DBT-informed mental health services will help to elucidate the effectiveness and efficacy of the program which will potentially serve as a guide for other resource-scarce regions.

    Matched MeSH terms: Adaptation, Physiological
  16. Qu D, Show PL, Miao X
    Int J Mol Sci, 2021 Feb 27;22(5).
    PMID: 33673599 DOI: 10.3390/ijms22052387
    Saline-alkali soil has become an important environmental problem for crop productivity. One of the most effective approaches is to cultivate new stress-tolerant plants through genetic engineering. Through RNA-seq analysis and RT-PCR validation, a novel bZIP transcription factor ChbZIP1, which is significantly upregulated at alkali conditions, was obtained from alkaliphilic microalgae Chlorella sp. BLD. Overexpression of ChbZIP1 in Saccharomyces cerevisiae and Arabidopsis increased their alkali resistance, indicating ChbZIP1 may play important roles in alkali stress response. Through subcellular localization and transcriptional activation activity analyses, we found that ChbZIP1 is a nuclear-localized bZIP TF with transactivation activity to bind with the motif of G-box 2 (TGACGT). Functional analysis found that genes such as GPX1, DOX1, CAT2, and EMB, which contained G-box 2 and were associated with oxidative stress, were significantly upregulated in Arabidopsis with ChbZIP1 overexpression. The antioxidant ability was also enhanced in transgenic Arabidopsis. These results indicate that ChbZIP1 might mediate plant adaptation to alkali stress through the active oxygen detoxification pathway. Thus, ChbZIP1 may contribute to genetically improving plants' tolerance to alkali stress.
    Matched MeSH terms: Adaptation, Physiological/genetics
  17. Hashim NA, Abd Razak NA, Gholizadeh H, Abu Osman NA
    JMIR Serious Games, 2021 Feb 04;9(1):e17017.
    PMID: 33538698 DOI: 10.2196/17017
    BACKGROUND: Brain plasticity is an important factor in prosthesis usage. This plasticity helps with brain adaptation to learn new movement and coordination patterns needed to control a prosthetic hand. It can be achieved through repetitive muscle training that is usually very exhausting and often results in considerable reduction in patient motivation. Previous studies have shown that a playful concept in rehabilitation can increase patient engagement and perseverance.

    OBJECTIVE: This study investigated whether the inclusion of video games in the upper limb amputee rehabilitation protocol could have a beneficial impact for muscle preparation, coordination, and patient motivation among individuals who have undergone transradial upper limb amputation.

    METHODS: Ten participants, including five amputee participants and five able-bodied participants, were enrolled in 10 1-hour sessions within a 4-week rehabilitation program. In order to investigate the effects of the rehabilitation protocol used in this study, virtual reality box and block tests and electromyography (EMG) assessments were performed. Maximum voluntary contraction was measured before, immediately after, and 2 days after interacting with four different EMG-controlled video games. Participant motivation was assessed with the Intrinsic Motivation Inventory (IMI) questionnaire and user evaluation survey.

    RESULTS: Survey analysis showed that muscle strength and coordination increased at the end of training for all the participants. The results of Pearson correlation analysis indicated that there was a significant positive association between the training period and the box and block test score (r8=0.95, P

    Matched MeSH terms: Adaptation, Physiological
  18. Parvizpour S, Hussin N, Shamsir MS, Razmara J
    Appl Microbiol Biotechnol, 2021 Feb;105(3):899-907.
    PMID: 33427934 DOI: 10.1007/s00253-020-11074-0
    Psychrophiles are cold-living microorganisms synthesizing enzymes that are permanently active at almost near-zero temperatures. Psychrozymes are supposed to be structurally more flexible than their homologous proteins. This structural flexibility enables these proteins to undergo conformational changes during catalysis and improve catalytic efficiency at low temperatures. The outstanding characteristics of the psychrophilic enzymes have attracted the attention of the scientific community to utilize them in a wide variety of industrial and pharmaceutical applications. In this review, we first highlight the current knowledge of the cold-adaptation mechanisms of the psychrophiles. In the sequel, we describe the potential applications of the enzymes in different biotechnological processes specifically, in the production of industrial and pharmaceutical products. KEY POINTS: • Methods that organisms have evolved to survive and proliferate at cold environments. • The economic benefits due to their high activity at low and moderate temperatures. • Applications of the psychrophiles in biotechnological and pharmaceutical industry.
    Matched MeSH terms: Adaptation, Physiological
  19. Zheyuan C, Rahman MA, Tao H, Liu Y, Pengxuan D, Yaseen ZM
    Work, 2021;68(3):825-834.
    PMID: 33612525 DOI: 10.3233/WOR-203416
    BACKGROUND: The increasing use of robotics in the work of co-workers poses some new problems in terms of occupational safety and health. In the workplace, industrial robots are being used increasingly. During operations such as repairs, unmanageable, adjustment, and set-up, robots can cause serious and fatal injuries to workers. Collaborative robotics recently plays a rising role in the manufacturing filed, warehouses, mining agriculture, and much more in modern industrial environments. This development advances with many benefits, like higher efficiency, increased productivity, and new challenges like new hazards and risks from the elimination of human and robotic barriers.

    OBJECTIVES: In this paper, the Advanced Human-Robot Collaboration Model (AHRCM) approach is to enhance the risk assessment and to make the workplace involving security robots. The robots use perception cameras and generate scene diagrams for semantic depictions of their environment. Furthermore, Artificial Intelligence (AI) and Information and Communication Technology (ICT) have utilized to develop a highly protected security robot based risk management system in the workplace.

    RESULTS: The experimental results show that the proposed AHRCM method achieves high performance in human-robot mutual adaption and reduce the risk.

    CONCLUSION: Through an experiment in the field of human subjects, demonstrated that policies based on the proposed model improved the efficiency of the human-robot team significantly compared with policies assuming complete human-robot adaptation.

    Matched MeSH terms: Adaptation, Physiological
  20. Sher A, Arfat MY, Ul-Allah S, Sattar A, Ijaz M, Manaf A, et al.
    PLoS One, 2021;16(12):e0260673.
    PMID: 34932582 DOI: 10.1371/journal.pone.0260673
    Sunflower production is significantly lower in arid and semi-arid regions due to various crop management problem. Conservation of tillage provides the most excellent opportunity to reduce degradation of soil reserves and increase soil productivity. The main objective of this study was to investigate the combined effects of conservation tillage and drought stress on growth and productivity of different sunflower hybrids. Experimental treatments included two sunflower hybrids ('NK-Senji' and 'S-278'), two drought stress treatments (i.e., well-watered and drought stress at flowering and grain filling stages) and three tillage practices (i.e., conservation, minimum and deep tillage). The results indicated that morphological and physiological parameters, and yield-related traits were significantly (P≤0.05) affected by all individual factors; however, their interactive effects were non-significant. Among sunflower hybrids, 'NK-Senji' performed better for morphological, physiological, and yield-related traits than 'S-278'. Similarly, conservation tillage observed better traits compared to the rest of the tillage practices included in the study. Nonetheless, conservation tillage improved growth and yield-related traits of hybrid 'NK-Senji' under drought stress. Hence, it is concluded that conservation tillage can improve the productivity of sunflower under low moisture availability. Therefore, conservation tillage could be suggested in the areas of lower water ability to improve sunflower production. Nonetheless, sunflower hybrids or varieties need thorough testing for their adaptability to conservation tillage and low moisture availability before making recommendations.
    Matched MeSH terms: Adaptation, Physiological*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links