Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Abbasi MA, Rehman A, Siddiqui SZ, Hadi N, Mumtaz A, Shah SAA, et al.
    Pak J Pharm Sci, 2019 Jan;32(1):61-68.
    PMID: 30772791
    In the current research work, a series of new N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamides has been synthesized by reacting 1,4-benzozzdioxan-6-amine (1) with 4-chlorobenzenesulfonyl chloride (2) to yield N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamide (3) which was further reacted with different alkyl/aralkyl halides (4a-n) to afford the target compounds (5a-n). Structures of the synthesized compounds were confirmed by IR, 1H-NMR, EI-MS spectral techniques and CHN analysis data. The results of enzyme inhibition showed that the molecules, N-2-phenethyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5j) and N-(1-butyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5d), exhibited moderate inhibitory potential against acetylcholinesterase with IC50 values 26.25±0.11 μM and 58.13±0.15 μM respectively, whereas, compounds N-benzyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5i) and N-(pentane-2-yl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5f) showed moderate inhibition against α-glucosidase enzyme as evident from IC50 values 74.52±0.07 and 83.52±0.08 μM respectively, relative to standards Eserine having IC50 value of 0.04±0.0001 μM for cholinesterases and Acarbose having IC50 value 38.25±0.12 μM for α-glucosidase, respectively.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  2. Tadokoro K, Ohta Y, Inufusa H, Loon AFN, Abe K
    Int J Mol Sci, 2020 Mar 13;21(6).
    PMID: 32183152 DOI: 10.3390/ijms21061974
    Oxidative stress plays a crucial role in Alzheimer's disease (AD) from its prodromal stage of mild cognitive impairment. There is an interplay between oxidative stress and the amyloid β (Aβ) cascade via various mechanisms including mitochondrial dysfunction, lipid peroxidation, protein oxidation, glycoxidation, deoxyribonucleotide acid damage, altered antioxidant defense, impaired amyloid clearance, inflammation and chronic cerebral hypoperfusion. Based on findings that indicate that oxidative stress plays a major role in AD, oxidative stress has been considered as a therapeutic target of AD. In spite of favorable preclinical study outcomes, previous antioxidative components, including a single antioxidative supplement such as vitamin C, vitamin E or their mixtures, did not clearly show any therapeutic effect on cognitive decline in AD. However, novel antioxidative supplements can be beneficial for AD patients. In this review, we summarize the interplay between oxidative stress and the Aβ cascade, and introduce novel antioxidative supplements expected to prevent cognitive decline in AD.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  3. Anwar F, Saleem U, Ahmad B, Ashraf M, Rehman AU, Froeyen M, et al.
    Comput Biol Chem, 2020 Dec;89:107378.
    PMID: 33002716 DOI: 10.1016/j.compbiolchem.2020.107378
    Neurodegenerative diseases have complex etiology and pose a challenge to scientists to develop simple and cost-effective synthetic compounds as potential drug candidates for such diseases. Here, we report an extension of our previously published in silico screening, where we selected four new compounds as AChE inhibitors. Further, based on favorable binding possess, MD simulation and MMGBSA, two most promising compounds (3a and 3b) were selected, keeping in view the ease of synthesis and cost-effectiveness. Due to the critical role of BChE, LOX and α-glucosidase in neurodegeneration, the selected compounds were also screened against these enzymes. The IC50 values of 3a against AChE and BChE found to be 12.53 and 352.42 μM, respectively. Moderate to slight inhibitions of 45.26 % and 28.68 % were presented by 3a against LOX and α-glucosidase, respectively, at 0.5 mM. Insignificant inhibitions were observed with 3b against the four selected enzymes. Further, in vivo trial demonstrated that 3a could significantly diminish AChE levels in the mice brain as compared to the control. These findings were in agreement with the histopathological analysis of the brain tissues. The results corroborate that selected compounds could serve as a potential lead for further development and optimization as AChE inhibitors to achieve cost-effective anti-Alzheimer's drugs.
    Matched MeSH terms: Alzheimer Disease/drug therapy
  4. Bakhtiyari E, Ahmadian-Attari MM, Salehi P, Khallaghi B, Dargahi L, Mohamed Z, et al.
    Nutr Neurosci, 2017 Oct;20(8):469-477.
    PMID: 27219682 DOI: 10.1080/1028415X.2016.1183986
    OBJECTIVES: Although grape has been recently the topic of many investigations, Maviz (a kind of dried one) has remained neglected. The aim of this study was to assess anti-Alzheimer activity of Maviz.

    METHODS: To reach this goal, total phenolic content (TPC) of ethanolic (Eth) and aqueous (Aq) extracts were determined and radical scavenging activity was assayed by 2,2-diphenyl-1-picrylhydrazyl. Chemical compositions of each extract were also determined via GC-Mass. Behavioral changes were studied via passive avoidance and Morris water maze in Aβ-induced model of Alzheimer's disease. Catalase (CAT) and superoxide dismutase (SOD) determination were also done on rats' hippocampus.

    RESULTS: The results showed that seed Eth extract has a high level of TPC and radical scavenging activity. However, this extract had surprisingly no effect on memory and CAT and SOD activities. In contrast, fruit Aq and Eth extracts (containing furfurals as major compounds) inhibited memory impairment (P 

    Matched MeSH terms: Alzheimer Disease/drug therapy
  5. Rahman MA, Hossain S, Abdullah N, Aminudin N
    Int J Med Mushrooms, 2020;22(1):93-103.
    PMID: 32464001 DOI: 10.1615/IntJMedMushrooms.2020033383
    Hypercholesterolemia has been implicated as one of the pathomechanistic factors of Alzheimer's disease (AD), the most common neurodegenerative disorder affecting memory and learning abilities. In the present study, ameliorative effect of hot water extract (HWE) of mushroom Ganoderma lucidum to the memory and learning related behavioral performance of hypercholesterolemic and AD rats was investigated using Morris water maze (MWM). Male Wistar rats were randomly grouped into control, extract fed control, hypercholesterolemic, extract fed hypercholesterolemic, AD, and extract fed AD groups, each group containing 8 animals. Hypercholesterolemia was induced in rats by adding 1% cholesterol and 1% cholic acid with the basal diet of the respective group. Alzheimer's disease model rats were prepared through infusion of amyloid β(1-42) to the right ventricle. Memory and learning related performance of all the rats was tested for 6 consecutive days that included time taken to reach the submerged platform (sec) and distance traveled (m). G. lucidum HWE fed rats took less time and traveled less distance to find the submerged platform, which indicates the spatial learning and memory related behavioral amelioration of the extract fed rats compared with their non-fed counterparts. Thus, usage of G. lucidum seems promising in withstanding hypercholesterolemia-induced Alzheimer's disease pathogenesis.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  6. Rahman MA, Hossain S, Abdullah N, Aminudin N
    Int J Med Mushrooms, 2020;22(11):1067-1078.
    PMID: 33426838 DOI: 10.1615/IntJMedMushrooms.2020036354
    Alzheimer's disease (AD) is the leading neurodegenerative disorder affecting memory and learning of aged people. Hypercholesterolemia had been implicated as one of the stark hallmarks of AD. Recent AD control guidelines have suggested lifestyle modification to slow down the progression of AD. In this regard, medicinal mushroom Ganoderma lucidum seems apt. In the present study, hot water extract of G. lucidum (200 mg/kg body weight) was fed to the hypercholesterolemic and AD model rats for 8 weeks. Nonspatial memory and learning abilities of the model animals was assessed using novel object recognition (NOR) test, rotarod test, and locomotor/open-field test. Then, the animals were sacrificed and transmission electron micrograph (TEM) view of the hippocampal neurons was assessed. In all the nonspatial memory and learning tests, the G. lucidum HWE fed rats performed better indicating improved memory and learning abilities. TEM view showed regular arrangement of the neurons in the G. lucidum HWE fed rats compared with those of the deranged arrangement of the AD rats. G. lucidum might have aided in restoring the memory and learning abilities of the AD model animals through maintaining neuronal structure and function. Thus, G. lucidum could be suggested as a medicotherapeutic agent against AD.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  7. Pandey M, Choudhury H, Verma RK, Chawla V, Bhattamisra SK, Gorain B, et al.
    CNS Neurol Disord Drug Targets, 2020;19(9):648-662.
    PMID: 32819251 DOI: 10.2174/1871527319999200819095620
    Alzheimer Association Report (2019) stated that the 6th primary cause of death in the USA is Alzheimer's Disease (AD), which leads to behaviour and cognitive impairment. Nearly 5.8 million peoples of all ages in the USA have suffered from this disease, including 5.6 million elderly populations. The statistics of the progression of this disease is similar to the global scenario. Still, the treatment of AD is limited to a few conventional oral drugs, which often fail to deliver an adequate amount of the drug in the brain. The reduction in the therapeutic efficacy of an anti-AD drug is due to poor solubility, existence to the blood-brain barrier and low permeability. In this context, nasal drug delivery emerges as a promising route for the delivery of large and small molecular drugs for the treatment of AD. This promising pathway delivers the drug directly into the brain via an olfactory route, which leads to the low systemic side effect, enhanced bioavailability, and higher therapeutic efficacy. However, few setbacks, such as mucociliary clearance and poor drug mucosal permeation, limit its translation from the laboratory to the clinic. The above stated limitation could be overcome by the adaption of nanoparticle as a drug delivery carrier, which may lead to prolong delivery of drugs with better permeability and high efficacy. This review highlights the latest work on the development of promising Nanoparticles (NPs) via the intranasal route for the treatment of AD. Additionally, the current update in this article will draw the attention of the researcher working on these fields and facing challenges in practical applicability.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  8. Yuen CW, Murugaiyah V, Najimudin N, Azzam G
    J Ethnopharmacol, 2021 Feb 10;266:113418.
    PMID: 32991971 DOI: 10.1016/j.jep.2020.113418
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen, is a traditional Chinese medicine obtained from the dried root and rhizome of Salvia miltiorrhiza Bunge. It is known to be used for neurological disorder including for Alzheimer's disease (AD). This study uncovers the effect of Danshen water extract on the Alzheimer's disease model of C.elegans.

    MATERIAL AND METHODS: The composition of Danshen water extract was determined using (High Performance Liquid Chromatography (HPLC). Then Thioflavin T assay was used to determined if Danshen water extract could prevent the aggregation of amyloid-β peptide (Aβ). Alzheimer's disease C.elegans model was used to determine the effect of Danshen water extract. Finally, the reactive oxygen species (ROS) was determined using the 2,7-dichlorofuorescein diacetate method.

    RESULTS: In this study, we found that standardized Danshen water extract that contains danshensu (1.26%), salvianolic acid A (0.35%) and salvianolic acid B (2.21%) are able to bind directly to Aβ and prevents it from aggregating. The IC50 for the inhibition of Aβ aggregation by Danshen water extract was 0.5 mg/ml. In the AD model of C.elegans, Danshen water extract managed to alleviates the paralysis phenotype. Furthermore, the administration of Danshen water extract displayed antioxidant properties toward the Aβ-induced oxidative stress.

    CONCLUSIONS: AD is a widespread neurodegenerative disease attributed to the accumulation of extracellular plaques comprising Aβ. Danshen water extract could significantly reduce the progress of paralysis in the AD model of C. elegans, showing promising results with its antioxidant properties. It can be concluded that Danshen water extract could potentially serve as a therapeutic for AD.

    Matched MeSH terms: Alzheimer Disease/drug therapy*
  9. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G
    J Ethnopharmacol, 2021 Oct 28;279:114389.
    PMID: 34217797 DOI: 10.1016/j.jep.2021.114389
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment.

    AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aβ42's toxic effects.

    METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aβ42 fibrillation using an in vitro activity assay. Since Aβ42 aggregation results in neuronal degeneration, the potential Aβ42 inhibitors were next evaluated on Aβ42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB.

    RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aβ42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aβ42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aβ42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila.

    CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.

    Matched MeSH terms: Alzheimer Disease/drug therapy*
  10. Zha GF, Zhang CP, Qin HL, Jantan I, Sher M, Amjad MW, et al.
    Bioorg Med Chem, 2016 05 15;24(10):2352-9.
    PMID: 27083471 DOI: 10.1016/j.bmc.2016.04.015
    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.
    Matched MeSH terms: Alzheimer Disease/drug therapy
  11. Kongpakwattana K, Dilokthornsakul P, Dejthevaporn C, Pattanaprateep O, Chaiyakunapruk N
    J Med Econ, 2019 Jan;22(1):26-34.
    PMID: 30303420 DOI: 10.1080/13696998.2018.1534739
    Aims: Due to the lack of studies evaluating compliance or persistence with Alzheimer's Disease (AD) treatment outside High-Income Countries (HICs), this study aimed to assess compliance, persistence, and factors associated with non-compliance and non-persistence by utilizing existing "real-world" information from multiregional hospital databases in Thailand.Materials and methods: Study subjects were retrospectively identified from databases of five hospitals located in different regions across Thailand. AD patients aged ≥60 years who were newly-prescribed with donepezil, galantamine, rivastigmine, or memantine between 2013 and 2017 were eligible for analysis. The Medication Possession Ratio (MPR) was used as a proxy for compliance, while the Kaplan-Meier survival analysis was employed to estimate persistence. Logistic and Cox regressions were used to assess determinants of non-compliance and non-persistence, adjusted for age and gender.Results: Among 698 eligible patients, mean (SD) MPR was 0.83 (0.25), with 70.3% of the patients compliant to the treatment (having MPR ≥ 0.80). Half of the patients discontinued their treatment (having a treatment gap >30 days) within 177 days with a 1-year persistence probability of 21.1%. The patients treated in the university-affiliated hospital were more likely to be both non-compliant (OR = 1.71; 95% CI = 1.21-2.42) and non-persistent (HR = 1.33; 95% CI = 1.12-1.58). In addition, non-compliance was higher for those prescribed with single AD treatment (OR = 2.52; 95% CI = 1.35-4.69), while non-persistence was higher for those unable to reimburse for AD treatment (HR = 1.34; 95% CI = 1.11-1.62).Limitations: By using retrospective databases, a difficulty in validating whether the medications are actually taken after being refilled may over-estimate the levels of compliance and persistence. Meanwhile, possible random coding errors may under-estimate the strength of association findings.Conclusions: This study reveals the situation of compliance and persistence on AD treatment for the first time outside HICs. The determinants of non-compliance and non-persistence underline key areas for improvement.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  12. Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY, Chan EWL
    J Ethnopharmacol, 2018 May 10;217:187-194.
    PMID: 29462698 DOI: 10.1016/j.jep.2018.02.025
    ETHNOPHARMACOLOGICAL RELEVANCE: Piper sarmentosum Roxb. (PS), belonging to Piperaceae family, is an edible plant with medicinal properties. It is traditionally used by the Malays to treat headache and boost memory. Pharmacological studies revealed that PS exhibits anti-inflammatory, anti-oxidant, anti-acetylcholinesterase, and anti-depressant-like effects. In view of this, the present study aimed to investigate the anti-inflammatory actions of PS and its potential neuroprotective effects against beta-amyloid (Aβ)-induced microglia-mediated neurotoxicity.

    MATERIALS AND METHODS: The inhibitory effects of hexane (LHXN), dichloromethane (LDCM), ethyl acetate (LEA) and methanol (LMEOH) extracts from leaves of PS on Aβ-induced production and mRNA expression of pro-inflammatory mediators in BV-2 microglial cells were assessed using colorimetric assay with Griess reagent, ELISA kit and real-time RT-PCR respectively. Subsequently, MTT reduction assay was used to evaluate the neuroprotective effects of PS leaf extracts against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y neuroblastoma cells. The levels of tau proteins phosphorylated at threonine 231 (pT231) and total tau proteins (T-tau) were determined using ELISA kits.

    RESULTS: Polar extracts of PS leaves (LEA and LMEOH) reduced the Aβ-induced secretion of pro-inflammatory cytokines (IL-1β and TNF-α) in BV-2 cells by downregulating the mRNA expressions of pro-inflammatory cytokines. The inhibition of nitric oxide (NO) production could be due to the free radical scavenging activity of the extracts. In addition, conditioned media from Aβ-induced BV-2 cells pre-treated with LEA and LMEOH protected SH-SY5Y cells against microglia-mediated neurotoxicity. Further mechanistic study suggested that the neuroprotective effects were associated with the downregulation of phosphorylated tau proteins.

    CONCLUSIONS: The present study suggests that polar extracts of PS leaves confer neuroprotection against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y cells by attenuating tau hyperphosphorylation through their anti-inflammatory actions and could be a potential therapeutic agent for Alzheimer's disease.

    Matched MeSH terms: Alzheimer Disease/drug therapy*
  13. Mohamad NV, Ima-Nirwana S, Chin KY
    Curr Drug Targets, 2018;19(8):898-906.
    PMID: 28914204 DOI: 10.2174/1389450118666170913162739
    Cognitive function and testosterone level of men decline concurrently with age. Low testosterone levels are associated with higher risk of Alzheimer's disease and mild cognitive impairment in men. There are continuous debates on whether this relationship is casual. This paper aims to summarize the current evidence on the association between testosterone level and cognitive function in elderly men. The presence of testosterone, androgen receptor and its responsive genes indicates that testosterone has biological functions in the central nervous system. The ability of the body to convert testosterone into estrogen suggests that part of the actions of testosterone could be mediated by estrogen. Observational studies generally showed that low endogenous testosterone levels were associated with poor cognitive performance in healthy elderly men. Testosterone substitution exerted positive effects on certain cognitive domains in normal and hypogonadal elderly men. In conclusion, testosterone may influence cognitive function in elderly men and its substitution may be considered in men with cognitive impairment and testosterone deficiency.
    Matched MeSH terms: Alzheimer Disease/drug therapy
  14. Pang KL, Chin KY
    Nutrients, 2018 May 06;10(5).
    PMID: 29734791 DOI: 10.3390/nu10050570
    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
    Matched MeSH terms: Alzheimer Disease/drug therapy
  15. Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, et al.
    CNS Neurol Disord Drug Targets, 2020;19(3):174-183.
    PMID: 32418534 DOI: 10.2174/1871527319666200518102130
    The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords "insulin"; "insulin resistance"; "Alzheimer's disease"; "Parkinson's disease" in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.
    Matched MeSH terms: Alzheimer Disease/drug therapy
  16. Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1211-1219.
    PMID: 30001606 DOI: 10.1016/j.ijbiomac.2018.06.190
    Alzheimer's disease (AD) is an increasingly prevalent neurological disorder of the central nervous system. There is growing evidence that amyloidogenesis is a pathological hallmark for AD; this leads to the formation of senile plaques. Naringenin is a bioflavonoid which has neuroprotective effects through its antioxidant and anti-inflammatory properties. However, its clinical usage is limited due to its inefficient transport across biological membranes. In the present study, a naringenin nanoemulsion was prepared and its neuroprotective effects were tested against β-amyloid induced neurotoxicity in a human neuroblastoma cell line (SH-SY5Y). The optimised, naringenin-loaded nanoemulsion formulation had a droplet size of 113.83 ± 3.35 nm and around 50 nm, as assessed respectively by photon correlation spectroscopy and transmission electron microscopy. The preparation showed a low polydispersity index (0.312 ± 0.003), a high zeta potential (12.4 ± 1.05) and a high percentage transmittance (97.01%). The neuroprotective activity of naringenin nanoemulsions was determined by assessing their ability to protect SH-SY5Y neuroblastoma cells against the neurotoxic effect of beta amyloid (Aβ). Aβ-induced production of reactive oxygen species (ROS), amyloid precursor protein (APP), β-secretase (BACE), total tau and phosphorylated tau (pT231) was also determined. The naringenin loaded nanoemulsion significantly alleviated the direct neurotoxic effects of Aβ on SH-SY5Y cells; this was associated with a down-regulation of APP and BACE expression, indicating reduced amyloidogenesis. Furthermore, it decreased the levels of phosphorylated tau in SH-SY5Y cells exposed to Aβ. These results suggest that a naringenin-loaded nanoemulsion could be a promising agent for the treatment of Alzheimer's disease.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  17. Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, et al.
    Clin Interv Aging, 2017;12:697-707.
    PMID: 28458525 DOI: 10.2147/CIA.S129145
    Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE-BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations.
    Matched MeSH terms: Alzheimer Disease/drug therapy
  18. Ng PY, Chang IS, Koh RY, Chye SM
    Metab Brain Dis, 2020 10;35(7):1049-1066.
    PMID: 32632666 DOI: 10.1007/s11011-020-00591-6
    Alzheimer's disease (AD) has been a worldwide concern for many years now. This is due to the fact that AD is an irreversible and progressive neurodegenerative disease that affects quality of life. Failure of some Phase II/III clinical trials in AD targeting accumulation of β-amyloid in the brain has led to an increase in interest in studying alternative treatments against tubulin-associated unit (Tau) pathology. These alternative treatments include active and passive immunisation. Based on numerous studies, Tau is reported as a potential immunotherapeutic target for tauopathy-related diseases including AD. Accumulation and aggregation of hyperphosphorylated Tau as neuropil threads and neurofibrillary tangles (NFT) are pathological hallmarks of AD. Both active and passive immunisation targeting Tau protein have shown the capabilities to decrease or prevent Tau pathology and improve either motor or cognitive impairment in various animal models. In this review, we summarise recent advances in active and passive immunisation targeting pathological Tau protein, and will discuss with data obtained from both animal and human trials. Together, we give a brief overview about problems being encountered in these immunotherapies.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  19. Lai SSM, Ng KY, Koh RY, Chok KC, Chye SM
    Metab Brain Dis, 2021 08;36(6):1087-1100.
    PMID: 33881723 DOI: 10.1007/s11011-021-00737-0
    The endosomal-lysosomal system mediates the process of protein degradation through endocytic pathway. This system consists of early endosomes, late endosomes, recycling endosomes and lysosomes. Each component in the endosomal-lysosomal system plays individual crucial role and they work concordantly to ensure protein degradation can be carried out functionally. Dysregulation in the endosomal-lysosomal system can contribute to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). In AD endosomal-lysosomal abnormalities are the earliest pathological features to note and hence it is important to understand the involvement of endosomal-lysosomal dysfunction in the pathogenesis of AD. In-depth understanding of this dysfunction can allow development of new therapeutic intervention to prevent and treat AD.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
  20. Warrier S, Marimuthu R, Sekhar S, Bhuvanalakshmi G, Arfuso F, Das AK, et al.
    Int J Biochem Cell Biol, 2016 06;75:104-11.
    PMID: 27063405 DOI: 10.1016/j.biocel.2016.04.002
    The extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer's disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated. A wide acting family of Wnt mediators, secreted frizzled-related proteins (sFRPs), has not been probed so far as molecular indicators of disease occurrence and progression of Alzheimer's. Unlike the effect of the Dickkopf (DKK) family of Wnt antagonists on AD, the sFRP molecules have a more pleiotropic impact on the Wnt signaling cascade and probably have a far-reaching involvement in neurodegeneration. The role of sFRPs has been poorly described in AD, and in this review, we analyze the present status of the role of sFRPs on neurodegeneration, their likely involvement, and potential implications in treatment modalities of AD. This information would provide valuable clues for the development of potential therapeutic targets for aberrant neurodegenerative disorders.
    Matched MeSH terms: Alzheimer Disease/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links